Skip to main content

History of Image-Guided Biopsy

  • Chapter
  • First Online:
Oncological PET/CT with Histological Confirmation

Abstract

When a suspicious lesion is found during a physical or imaging exam, histological characterization is frequently required. Early and accurate histologic diagnosis of a neoplastic condition requires tissue sampling and leads to the appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zerbino DD. Biopsy: its history, current and future outlook. Lik Sprava. 1994;(3–4):1–9. Review. Russian. PubMed.

    Google Scholar 

  2. Diamantis A, Magiorkinis E, Koutselini H. Fine-needle aspiration (FNA) biopsy: historical aspects. Folia Histochem Cytobiol. 2009;47(2):191–7.

    Article  PubMed  Google Scholar 

  3. Hopper KD. Percutaneous, radiographically guided biopsy: a history. Radiology. 1995;196:329–33.

    Article  CAS  PubMed  Google Scholar 

  4. Kun M. A new instrument for the diagnosis of tumors. Mon J Med Sci. 1847;7:853–4.

    Google Scholar 

  5. Skinner EH. The Sutton method of foreign body localization. Am J Roentgenology. 1917;4:350–5.

    Google Scholar 

  6. Blady JV. Aspiration biopsy of tumors in obscure or difficult locations under roentgenoscopic guidance. AJR. 1939;42:515–24.

    Google Scholar 

  7. Stewart FW. The diagnosis of tumors by aspiration. Am J Pathol. 1933;9:801–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin HE, Effis EB. Aspiration biopsy. Surg Gynecol Obstet. 1934;59:578–89.

    Google Scholar 

  9. Martin HE, Stewart FW. The advantages and limitations of aspiration biopsy. AJR. 1936;35:245–7.

    Google Scholar 

  10. Craver LF, Binkley JS. Aspiration biopsy of tumors of the lung. J Thorac Surg. 1939;8:436–63.

    Google Scholar 

  11. Craver LF. Diagnosis of malignant lung tumors by aspiration biopsy and by sputum examination. Surgery. 1940;8:947–60.

    Google Scholar 

  12. Iversen F, Bran C. Aspiration biopsy of the kidney. Am J Med. 1951;11:324–30.

    Article  CAS  PubMed  Google Scholar 

  13. Lusted LB, Mortimore GE, Hopper J. Needle renal biopsy under image amplifier control. AJR. 1956;75:953–5.

    CAS  Google Scholar 

  14. Lindblom K. Diagnostic kidney puncture in cysts and tumors. AJR. 1952;68:209–15.

    CAS  Google Scholar 

  15. Peirce CB, Cone WV, Bouchard J, Lewis RC. Medulloblastoma: non-operative management with roentgen therapy after aspiration biopsy. Radiology. 1949;52:621–32.

    Article  CAS  PubMed  Google Scholar 

  16. Mazet R, Cozen L. The diagnostic value of vertebral needle biopsy. Ann Surg. 1952;135:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zornoza J, Snow J, Lukeman JM, Libshitz HI. Aspiration biopsy of discrete pulmonary lesions using a new thin needle. Radiology. 1977;123:519–20.

    Article  CAS  PubMed  Google Scholar 

  18. Interventional Radiology Grand Rounds. Society of Interventional Radiology. 2004 – www.SIRweb.org.

  19. Goldberg BB, Pollack HM. Ultrasonic aspiration transducer. Radiology. 1972;102:187–9.

    Article  CAS  PubMed  Google Scholar 

  20. Soudack M, Nachtigal A, Vladovski E, Brook O, Gaitini D. Sonographically guided percutaneous needle biopsy of soft tissue masses with histopathologic correlation. J Ultrasound Med. 2006;25(10):1271–7.

    PubMed  Google Scholar 

  21. Wang J, Gao L, Tang S, Li T, Lei Y, Xie H, Liang J, Chen B, Wang X, Fan D. A retrospective analysis on the diagnostic value of ultrasound-guided percutaneous biopsy for peritoneal lesions. World J Surg Oncol. 2013;11(1):251.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cierniak R. Some words about the history of computed tomography. In: X-ray computed tomography in biomedical engineering. London: Springer-Verlag London Limited; 2011. p. 7–19. doi: 10.1007/978-0-85729-027-4.

    Google Scholar 

  23. Robb WL. Perspective on the first 10 years of the CT scanner industry. Acad Radiol. 2003;10(7):756–60. PubMed.

    Article  PubMed  Google Scholar 

  24. Alfidi RJ, Haaga J, Meaney TF, et al. Computed tomography of the thorax and abdomen; a preliminary report. Radiology. 1975;117:257–64.

    Article  CAS  PubMed  Google Scholar 

  25. Wesolowski JR, Lev MH. CT: history, technology, and clinical aspects. Semin Ultrasound CT MR. 2005;26(6):376–9. PubMed.

    Article  PubMed  Google Scholar 

  26. Tomiyama N, Yasuhara Y, Nakajima Y, Adachi S, Arai Y, Kusumoto M, Eguchi K, Kuriyama K, Sakai F, Noguchi M, Murata K, Murayama S, Mochizuki T, Mori K, Yamada K. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol. 2006;59(1):60–4.

    Article  PubMed  Google Scholar 

  27. Lal H, Neyaz Z, Nath A, Borah S. CT-guided percutaneous biopsy of intrathoracic lesions. Korean J Radiol. 2012;13(2):210–26. Published online 2012 March 7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paulsen SD, Nghiem HV, Negussie E, Higgins EJ, Caoili EM, Francis IR. Evaluation of imaging-guided core biopsy of pancreatic masses. AJR Am J Roentgenol. 2006;187(3):769–72.

    Article  PubMed  Google Scholar 

  29. Mueller P, Miketic L, Simeone J, et al. Severe acute pancreatitis after percutaneous biopsy of the pancreas. AJR. 1988;151:493–4.

    Article  CAS  PubMed  Google Scholar 

  30. Koenker R, Mueller P, vanSonnenberg E. Interventional radiology of the adrenal glands. Semin Roentgenol. 1988;22:314–22.

    Article  Google Scholar 

  31. Mueller PR, Stark DD, Simeone JF, et al. MR-guided aspiration biopsy: needle design and clinical trials. Radiology. 1986;161:605–9.

    Article  CAS  PubMed  Google Scholar 

  32. Adam G, Bücker A, Nolte-Ernsting C, Tacke J, Günther RW. Interventional MR imaging: percutaneous abdominal and skeletal biopsies and drainages of the abdomen. Eur Radiol. 1999;9(8):1471–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kerimaa P, Marttila A, Hyvönen P, Ojala R, Lappi-Blanco E, Tervonen O, Blanco Sequeiros R. MRI-guided biopsy and fine needle aspiration biopsy (FNAB) in the diagnosis of musculoskeletal lesions. Eur J Radiol. 2013;82(12):2328–33.

    Google Scholar 

  34. Kobayashi K, Bhargava P, Raja S, Nasseri F, Al-Balas HA, Smith DD, George SP, Vij MS. Image-guided biopsy: what the interventional radiologist needs to know about PET/CT. Radiographics. 2012;32(5):1483–501.

    Article  PubMed  Google Scholar 

  35. Wagner Jr HN. A brief history of positron emission tomography (PET). Semin Nucl Med. 1998;28(3):213–20. PubMed PMID: 9704363.

    Google Scholar 

  36. Nutt R. The history of positron emission tomography. Mol Imag Biol. 2002;4:11–26.

    Article  Google Scholar 

  37. Ter-Pogossian MM, Phelps ME, Hoffman EJ, et al. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114:89–98.

    Article  CAS  PubMed  Google Scholar 

  38. Hoffmann EJ, Phelps ME, Mullani NA, Higgins CS, Ter-Pogossian MM. Design and performance characteristics of a whole-body transaxial tomograph. J Nucl Med. 1976;17:493–503.

    CAS  PubMed  Google Scholar 

  39. Phelps ME, Hoffman EJ, Mullani NA, et al. Design considerations for a positron emission transaxial tomograph (PET III). IEEE Trans Biomed Eng. 1976;NS-23:516–22.

    Google Scholar 

  40. Ido T, Wan CN, Casella V, et al. Labeled 2-dexoy-D-glucose analogs: 18F labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labelled Comp Radiopharm. 1978;14:175–83.

    Article  CAS  Google Scholar 

  41. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O’shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11(8):2785–808. Review PubMed.

    Article  CAS  PubMed  Google Scholar 

  42. Sokoloff L, Reivich M, Kennedy C, des Rosieers MH, et al. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    Article  CAS  PubMed  Google Scholar 

  43. Reivich M, Kuhl DE, Wolf A, et al. The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:127–37.

    Article  CAS  PubMed  Google Scholar 

  44. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6(5):371–88. PubMed.

    Article  CAS  PubMed  Google Scholar 

  45. Warburg O, Posener K, Negelein E. Uber den stoffwechsel der carcinomzelle. Biochem Zeitschrift. 1924;152:309–35.

    CAS  Google Scholar 

  46. Di Chiro G, Oldfield E, Bairamian D, et al. In vivo glucose utilization of tumors of the brain stem and spinal cord. New York: Raven; 1985. p. 351–61.

    Google Scholar 

  47. Dahlbom M, Hoffman EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, Phelps ME. Evaluation of a positron emission tomography (PET) scanner for whole body imaging. J Nucl Med. 1992;33:1191–9.

    CAS  PubMed  Google Scholar 

  48. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.

    Article  PubMed  Google Scholar 

  49. Hain SF, Curran KM, Beggs AD, Fogelman I, O’Doherty MJ, Maisey MN. FDG-PET as a “metabolic biopsy” tool in thoracic lesions with indeterminate biopsy. Eur J Nucl Med. 2001;28(9):1336–40. PubMed.

    Article  CAS  PubMed  Google Scholar 

  50. Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDGPET literature. J Nucl Med. 2001;42:1–93S.

    Google Scholar 

  51. Klaeser B, Mueller MD, Schmid RA, Guevara C, Krause T, Wiskirchen J. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol. 2009;19(7):1780–5.

    Article  PubMed  Google Scholar 

  52. O’Sullivan PJ, Rohren EM, Madewell JE. Positron emission tomography-CT imaging in guiding musculoskeletal biopsy. Radiol Clin North Am. 2008;46(3):475–86.

    Article  PubMed  Google Scholar 

  53. Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG. Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology. 2010;256(1):305–11.

    Article  PubMed  Google Scholar 

  54. Govindarajan MJ, Nagaraj KR, Kallur KG, Sridhar PS. PET/CT guidance for percutaneous fine needle aspiration cytology/biopsy. In J Radiol Imag. 2009;19:208–9. [PubMed:19881087].

    Article  CAS  Google Scholar 

  55. Klaeser B, Wiskirchen J, Wartenberg J, Weitzel T, Schmid RA, Mueller MD, Krause T. PET/CT-guided biopsies of metabolically active bone lesions: applications and clinical impact. Eur J Nucl Med Mol Imaging. 2010;37(11):2027–36.

    Article  PubMed  Google Scholar 

  56. Werner MK, Aschoff P, Reimold M, Pfannenberg C. FDG-PET/CT-guided biopsy of bone metastases sets a new course in patient management after extensive imaging and multiple futile biopsies. Br J Radiol. 2011;84(999):e65–7.

    Article  CAS  PubMed  Google Scholar 

  57. Venkatesan AM, Kadoury S, Abi-Jaoudeh N, Levy EB, Maass-Moreno R, Krücker J, Dalal S, Xu S, Glossop N, Wood BJ. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology. 2011;260(3):848–56.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Win AZ, Aparici CM. Real-time FDG PET/CT-guided bone biopsy in a patient with two primary malignancies. Eur J Nucl Med Mol Imaging. 2013;40(11):1787–8.

    Article  PubMed  Google Scholar 

  59. Fukuda H, Kubota K, Matsuzawa T. Pioneering and fundamental achievements on the development of positron emission tomography (PET) in oncology. Tohoku J Exp Med. 2013;230(3):155–69. PubMed PMID: 23883588.

    Article  PubMed  Google Scholar 

  60. Dhingra VK, Mahajan A, Basu S. Emerging clinical applications of PET based molecular imaging in oncology: the promising future potential for evolving personalized cancer care. Indian J Radiol Imaging. 2015;25(4):332–41. doi: 10.4103/0971-3026.169467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano J. Cerci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Cerci, J.J., Bogoni, M., Delbeke, D. (2016). History of Image-Guided Biopsy. In: Cerci, J., Fanti, S., Delbeke, D. (eds) Oncological PET/CT with Histological Confirmation. Springer, Cham. https://doi.org/10.1007/978-3-319-27880-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27880-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27878-0

  • Online ISBN: 978-3-319-27880-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics