Skip to main content

Survey of Solid Rocket Propulsion in Russia

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

A short survey of development of solid propellants and solid rockets in Russia till the beginning of the twenty-first century is presented. The design solutions are considered which were used in development of ballistic missiles (field, tactical, mid-range, and intercontinental), as well as of other rockets like surface-to-air, air-to-air, sea, and antitank. The problems and accomplishments are considered concerning the justification of expediency and possibility of application of solid-propellant rockets. These works resulted in the creation of the theory of intra-chamber processes, including experimental and theoretical studies of processes of solid-propellant combustion and ablation of thermal protection coverings (insulating liners) of internal surfaces of solid motors and nozzles. Upon development of solid-propellant rockets, different automated systems have been employed: for design of elements of rocket as a whole, for processing experimental information, and for planning scientific and technological experiments. Development of novel design rockets was carried out in different Research and Development and Technological organizations of Russia. Practically all plants for production of solid propellants and manufacturing the motor cases and nozzles were established in the second half of the twentieth century. The exceptions are the plants which dealt with the volley fire rocket systems (Katyusha). Not everything could be discussed in this survey because design details of propellant charges and motors, as well as data on solid-propellant formulations, are not available in open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The modern name is the Federal Center for Dual-Use Technologies “Soyuz (Union).”

  2. 2.

    See also chapter “The Russian Missile Saga: Personal Notes from a Direct Participant” by Manelis in this volume.

  3. 3.

    See also chapter “Effects of Dual Oxidizers on Composite Solid Propellant Burning” by Pang et~al. in this volume.

  4. 4.

    See also chapters “Synergistic Effect of Ammonium Perchlorate on HMX Thermal Stability and Combustion Behavior of Compositions with Active Binder” by Pivkina et~al. and “Combustion of Solid Propellants with Energetic Binders” by Rashkovskiy et al. in this volume.

Abbreviations

ADN:

Ammonium dinitramide

AP:

Ammonium perchlorate

AS:

Academy of Sciences

ASD:

Automatic systems of design

ASPEI:

Automatic systems of processing experimental information

ASSDD:

Automatic systems of service of design development

ASSSR:

Automatic systems of service of scientific research

CPSU:

Communist Party of the Soviet Union

CVEI:

Copolymer of vinyl ether of ethylene glycol mononitrate and isoprene

ICBM:

Intercontinental ballistic missile

ICP:

Institute of Chemical Physics

k:

ZN stability parameter

MAI:

Ministry of Aviation Industry

MDI:

Ministry of the Defense Industry

MGME:

Ministry of General Mechanical Engineering

MITT:

Moscow Institute of Thermal Technology

MMEI:

Ministry of Mechanical Engineering Industry

QSHOD:

Quasi-steady gas-phase homogeneous one-dimensional

r:

ZN stability parameter

SP:

Solid propellant

SRM:

Solid rocket motor

USSR:

Union of Soviet Socialist Republics

α:

Coefficient in Beer-Lambert-Bouguer law

References

  1. Zabelin LV, Goryunova EA (2006) V.V. Bakhirev- sozdatel’ sovremennoi boepripasnoi promyshlennosti (V. V. Bakhirev – the founder of the modern ammunition industry). Grif and Co, Tula

    Google Scholar 

  2. Sorkin RY (1983) The theory of intra-chamber processes in solid-propellant rockets (Solid rockets interrior ballistics). Science, Moscow, 288 pp

    Google Scholar 

  3. Kalinin VV, Kovalyov YN, Lipanov AM (1986) Nestacionarnie processi i metodi proektirovania uzlov RDTT (Non-stationary processes and methods of design of the SRM units). Mechanical engineering, Moscow

    Google Scholar 

  4. Sorkin RY (1967) Gazotermodinamika raketnikh dvigatelei na tverdom toplive (Gaz thermodynamics of solid rocket motors). Science, Moscow

    Google Scholar 

  5. Shishkov AA (1974) Gazodinamika porokhovikh raketnikh dvigatelei (Gaz dynamics of powder rocket motors). Mechanical engineering, Moscow

    Google Scholar 

  6. Wimpress RN (1952) Vnutrennyaya ballistika porokhovikh raket- (Internal ballistics of powder rockets (translated from English by A.N. Rubashova). Foreign Literature, Moscow

    Google Scholar 

  7. Vilyunov VN (1960) K teorii erozionnogo gorenia porokhov (To the theory of erosive burning of gunpowder), Proc USSR Acad Sci 136(2):381–383

    Google Scholar 

  8. Vilyunov VN, Dvoryashin AA (1971) Regularities “N”-type propellant burning of gunpowder N in flow. Comb Expl Shock Waves 7(1):45–51

    Google Scholar 

  9. Zel’dovich YB (1942) On the theory of combustion for powders and explosives. J Exp Theor Phys (Russian) 12(11–12):498

    Google Scholar 

  10. Novozhilov BV (1965) J Appl Mech Tech Phys, No 6, 141 (Russian)

    Google Scholar 

  11. Zel’dovich YB, Leipunsky OI, Librovich VB (1975) Teoriya nestatsionarnogo gorenya of powder (The theory of nonstationary combustion of powder). Science, Moscow

    Google Scholar 

  12. Zarko VE, Beckstead MW (1996) Simulation of transient solid propellant combustion. Proc Zel’dovich Memorial 1:255–265, Moscow

    Google Scholar 

  13. Denison MR, Baum E (1961) A simplified model of unstable burning in solid propellants. ARS J 31:1112

    Article  MATH  Google Scholar 

  14. Culick FEC (1968) AIAA J 6, (12), 2241

    Google Scholar 

  15. DeLuca LT (1990) Pure Appl Chern 62(5):825–838, IUPAC

    Google Scholar 

  16. Summerfield M, Caveny LH et al (1971) J Spacecr Rocket 8:251 (see also AIAA Paper 1970, 70)

    Article  Google Scholar 

  17. Condon JA, Osborn JR, Glick RL (1976) 13th JANNAF combustion meeting

    Google Scholar 

  18. Nelson CW (1978) Response of three types of transient combustion models to gun pressurization. Combust Flame 32:317–319

    Article  Google Scholar 

  19. Nelson CW (1979) Calculated transient combustion of solid propellants, Proc 10th international annual conference of ICT, Karlsruhe, pp 153–167

    Google Scholar 

  20. (a) Novozhilov BV (1973) Nestatsionarnoe gorenie tverdykh raketnykh topliv (Nonstationary combustion of solid propellants). Science, Moscow; (b) Novozhilov BV (1988) Theory of nonstationary combustion of condensed systems including finite relaxation times. Khim Fiz (Russian) 7:674–687

    Google Scholar 

  21. Novozhilov BV (1992) Theory of nonsteady burning and combustion stability of solid propellants by the Zel’dovich-Novozhilov method. In: DeLuca LT, Price EW, Summerfield M (Eds) AIAA progress in astronautics and aeronautics, Ch. 15, vol 143. AIAA, Washington, DC

    Google Scholar 

  22. King MК (1982) Modeling of pressure-coupled response functions of solid propellants. Nineteenth symposium (international) on combustion, Pittsburgh, 707

    Google Scholar 

  23. Frost VA, Yumashev VL (1976) Combust Expl Shock Waves 12:496

    Google Scholar 

  24. DeLuca LT (1984) Extinction Theories and Experiments. In: Kuo KK, Summerfield M (Eds), AIAA progress in astronautics and aeronautics, Ch. 12, vol 90. AIAA, New York, NY

    Google Scholar 

  25. Zarko VE, Gusachenko LK (2010) Critical review of phenomenological models for studying transient combustion of solid propellants. Int Journal Spray Combust Dynamics 2(2):151–167, Multi-Science Publishing, UK

    Google Scholar 

  26. Vilyunov VN, Zarko VE (1989) Ignition of solids. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  27. Gusachenko LK, Zarko VE, Rychkov AD (2012) Ignition and extinction of homogeneous energetic materials by a light pulse. Combust Expl Shock Waves 48(1):73–80

    Google Scholar 

  28. Mikheev VF, Levashov YV (1973) Experimental study of the critical conditions for ignition and combustion of gunpowder. Fiz Goreniya Vzryva 9(4):438–441 [Comb Expo Shock Waves 9 (4), 506–510 (1973)]

    Google Scholar 

  29. DeLuca LT, Caveny LH, Ohlemiller TJ, Summerfield M (1976) Radiative ignition of double base propellants: II. Preignition events and source effects. AIAA J 14:1111–1117

    Article  Google Scholar 

  30. Leipunskii OI, Kolesnikov VI, Marshakov VN (1964) Transient burning rate of powders. Proc USSR Acad Sci 154(4):907–909. See also “Theory of combustion of powders and explosives” (O.I. Leipunskii and Yu.V. Frolov, Eds. Science, Moscow, 1982)

    Google Scholar 

  31. Pokhil PF, Belyaev AF, Frolov YV et al (1972) Combustion of powdered metals in active media. Science, Moscow

    Google Scholar 

  32. Lipanov AM (1987) O problemno orientirovannom programnom komplekse pri issledovanii processov v gazogeneratorax (About the problem focused program system at research of processes in gas generators). Proc USSR Acad Sci 293(1):33–47

    Google Scholar 

  33. Lipanov AM (2002) Kratkaya istoriya sozdania tverdotoplivnikh raket v Rossii v 20 veke (Brief history of development of solid propellant rockets in Russia in XX century). Inst Appl Mech, Ural Div Russ Acad Sci, Izhevsk, 84 pp

    Google Scholar 

  34. Lipanov AM (2003) Historical survey of solid-propellant rocket development in Russia. J Prop Power 19(6):1067–1088

    Google Scholar 

  35. Pak Z (1993) Some ways to higher environmental safety of solid rocket applications. AIAA Paper 93–1755, 12 pp

    Google Scholar 

  36. Sakovich GV (1995) Design principles of advanced solid propellants. J Prop Power 11(4):830–837

    Article  Google Scholar 

  37. Williams FA, Barrère M, Huang NC (1969) Fundamental aspects of solid propellant rockets, AGARDograph 116. Technivision Services, Slough, UK

    Google Scholar 

  38. Komarov VF, Shandakov VA (1999) Solid fuels, their properties, and applications. Combust Expl Shock Waves #2, 139–143

    Google Scholar 

  39. Portret na fone epokhy (2014) «Aleksandr Davidovich Nadiradze». 100 let so dna rogdenia (A portrait on era background. “Alexander Davidovich Nadiradze”. 100 years since birth). RPM, Yaroslavl, 2014

    Google Scholar 

  40. Shevchenko SN (ed) (2007) Strategicheskie raketnie kompleksi nazemnogo bazirovania (Strategic missile systems of land basing). Military parade, Moscow

    Google Scholar 

  41. Mobilnui raketnui kompleks RS-24 “Yars”. (Mobile Yars RS-24 missile system). (RIANOVOSTI. News line. Infographics. 11.04.2011)

    Google Scholar 

  42. Gertsev O (2007) Rabota po «Bulave» idet po planu. Interviu s Yu. Solomonovim. (Work on “Mace” goes according to the plan. Interview to Yu.Solomonov), All-Russian weekly newspaper “Military-Industry Courier”, No. 34(200), 5.09.2007

    Google Scholar 

  43. Ballisticheskaia raketa «Bulava-30». (Ballistic missile “Bulava-30”), “Army Messenger”, 01.11.2010

    Google Scholar 

  44. Uchayev VN (Ed) (2010) Polevaya academiya raketchikov (Field academy of rocketeers) 2nd edn. V.Ch. 422, 102–112

    Google Scholar 

  45. Pulin G (2008) Voorugennie sily: god peremen. (Armed forces: year of changes). Weekly newspaper “Military-Industry Courier” Moscow Issue 15(231), 16.04.2008

    Google Scholar 

  46. Markovsky V, Perov K (2006) Sovetskie aviacionnie raketi «vozdukh-zemlya». (Soviet aviation air-to-ground missiles). Eksprint, Moscow, 50 pp

    Google Scholar 

  47. Angelskii R, Korovin V (2005) Otechestvenie upravlaemie raketi «vozdux-vozdux». Chast’ 1. Raketi maloi dalnosti. (Native air-to-air guided missiles. Part 1. Rockets of short range), “Equipment and Arms Yesterday, Today, Tomorrow” Magazine, no. 9

    Google Scholar 

  48. Karpenko AV (2014) Aviacionaya raketa sverkh bolshoi dalnosti klassa «vozdukh-vozdukh» KS-172. (Aviation “air-to-air” rocket of super long range KS-172). Military and technical collection “Bastion”, St. Petersburg, 2.07.2014

    Google Scholar 

  49. Angelscii RD (2002) Otechestvennye upravlaemie raketi «vozdukh-vozdukh». (The native air-to-air guided missiles), Aircraft and astronautics, no. 1

    Google Scholar 

  50. Vpervie v mire. Interviu generalnogo directora NII RP S.M. Kurushkina. (For the first time in the world. Interview of the general director of the RP Scientific Research Institute S. M. Kurushkin), Arrow, No. 2 (2009)

    Google Scholar 

  51. Sergeyev VK (2012) Cherez ternii k ponimaniu. (Through thorns – to understanding). Electron Sci Technol Business, No. 5

    Google Scholar 

  52. Ganin S, Korovin V, Karpenko A, Angelskii R (2005) Sistema S-125. (S-125 system). “Equipment and Arms Yesterday, Today, Tomorrow” Magazine, No. 5, pp 8–10

    Google Scholar 

  53. Pervov M (2001) Zenitnoe raketnoe oruzhie protivovozdushnoi oboroni strani. (Antiaircraft rocket weapon of antiaircraft defense of the country). AviaRus-XXI, Moscow

    Google Scholar 

  54. Angelskii RD (2002) Otechestvenie protivotankovie kompleksi. Ilustrirovanii spravochnik. (Native anti-tank systemes. The illustrated reference book). AST “Astrel”, Moscow, 192 pp

    Google Scholar 

  55. Karpenko AV, Ganin SM (2000) Otechestvennie aviacionnie takticheskie raketi. (Native aviation tactical missiles). “Bastion”, Moscow, No. 1

    Google Scholar 

  56. Shipunov A, Kuznetsov V, Selkin V (2004) Koncepcia mnogocelevogo visokotochnogo orugia megvidovogo primenenia. (Concept of multi-target precision weapons of interspecific application). “Military parade”, Moscow, January–February

    Google Scholar 

  57. Shipunov A, Dudka V, Zakharov L, Parfyonov Y (2000) Koncepcia PTRK tretiego pokolenia. (Concept of PTRK of the third generation). “Military parade”, January–February, Moscow, No.31

    Google Scholar 

  58. Ismagilov ZR, Malakhov VV, Sakovich GV et al (2003) Environmentally safe process for utilization of large-scale composite solid rocket propellant charges. In: Proceedings of the 34th international annual conference of ICT, P144 (14 pp), Karlsruhe, FRG

    Google Scholar 

  59. Perov VV, Zarko VE, Shandakov VA, et al (2003) Non-intrusive methods for studying mass loss kinetics in destruction of solid propellants. In: Proc 34th international annual conference ICT, P67 (14 pp), Karlsruhe, FRG

    Google Scholar 

  60. https://ru.wikipedia.org/wiki

Download references

Acknowledgments

The work was financially supported from the Ministry of Education and Science of the Russian Federation within the framework of the Federal Target Program. Agreement No. 14.578.21.0034 (RFMEFI57814X0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Zarko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lipanov, A.M., Zarko, V.E. (2017). Survey of Solid Rocket Propulsion in Russia. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics