Skip to main content

Synthesis of New Oxidizers for Potential Use in Chemical Rocket Propulsion

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

The currently used oxidizer for solid rocket propellants – ammonium perchlorate (AP) – has been detected as hazardous to human’s thyroid gland, amphibian pigmentation and growth, and a large number of maritime life forms. Presently used or tested perchlorate-free alternatives like ammonium nitrate or ammonium dinitramide overcome these harms while showing up new problems like polymorphism, hygroscopicity, or a low thermal stability. Therefore, research is further driven toward environmentally more acceptable and strong oxidizers. One strategy is the synthesis of neutral CHNO-based materials for full or partial replacement of AP. Here we report about several new compounds with positive oxygen balance that were synthesized within our group over the last few years. The main focus is on the syntheses of molecules containing the trinitromethyl functionality due to the high oxygen content of this group. In addition the analogue fluorodinitromethyl derivatives were investigated for comparison. The prepared materials were chemically characterized, and in addition the sensitivities toward impact, friction, and electrostatic discharge were determined experimentally. Furthermore, the performances regarding the specific impulse of aluminized mixtures of the compounds were calculated using the Explo5 computer code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutton GP (2001) Rocket propulsion elements, 7th edn. Wiley, New York

    Google Scholar 

  2. Klapötke TM (2012) Chemistry of high-energy materials, 2nd edn. de Gruyter, Berlin

    Book  Google Scholar 

  3. Akhavan J (2004) The chemistry of explosives, 2nd edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. NIST Chemistry WebBook (2014) http://webbook.nist.gov/cgi/cbook.cgi?ID=C1344281&Mask=2#Thermo-Condensed. Accessed 26 Nov 2014

  5. Kubota N (2002) Propellants and explosives. Wiley-VCH, Weinheim

    Google Scholar 

  6. Cooper PW (1996) Explosives engineering, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  7. (a) Ang HG, Pisharath S (2012) Energetic polymers, 1st edn. Wiley-VCH, Weinheim; (b) Moore TL (1997) Assessment of HTPB and PBAN propellant usage in the US, American Institute of Aeronautics and Astronautics

    Google Scholar 

  8. (a) Gu B, Coates JD (2006) Perchlorate: environmental occurrence, interactions and treatment. Springer Verlag, New York; (b) Motzer WE (2001) Perchlorate: problems, detection, and solutions. Environ Forensic 4(2):301–311

    Google Scholar 

  9. Rogers WP (1986) Report of the Presidential Commission on the Space Shuttle Challenger Accident, Commission report

    Google Scholar 

  10. Routley JG (1988) Fire and explosions at Rocket Fuel Plant in Henderson, Nevada, Report 021 of the Major Fires Investigation Project conducted by TriData Corporation under contract EMW-8-4321 to the United States Fire Administration, Federal Emergency Management Agency

    Google Scholar 

  11. CNN interactive (2014) Unmanned rocket explodes after liftoff, Jan. 17th 1997 http://edition.cnn.com/TECH/9701/17/rocket.explosion. Accessed 26 Nov 2014

  12. Holleman AF (1995) Lehrbuch der Anorganischen Chemie, 101st edn. de Gruyter, Berlin

    Google Scholar 

  13. (a) McLanahan ED et al (2007) Low-dose effects of ammonium perchlorate on the hypothalamic-pituitary – thyroid axis of adult male rats pretreated with PCB126. pp 308–317; (b) Tarone RE, Lipworth L, McLaughlin JK (2010) The epidemiology of environmental perchlorate exposure and thyroid function: a comprehensive Review. pp 653–660; (c) Dumont J (2008) The effects of ammonium perchlorate on reproduction and development of amphibians, SERDP Project ER-1236

    Google Scholar 

  14. Makhijani A, Gurney KR (1995) Mending the ozone hole: science, technology, and policy. Institute for Energy and Environmental Research. MIT press, Boston

    Google Scholar 

  15. Taylor JWR, Munson K (1981) Jane’s all the world’s aircraft 1981–82. Jane’s Publishing Company Limited, London

    Google Scholar 

  16. Eurenco Bofors AB (2008) Karlskoga

    Google Scholar 

  17. Göbel M, Klapötke TM (2009) Development and testing of energetic materials: the concept of high densities based on the trinitroethyl functionality. Adv Funct Mater 19:347–365

    Article  Google Scholar 

  18. (a) Marans NS, Zelinski RP (1950) 2,2,2-trinitroethanol: preparation and properties. J Am Chem Soc 72(11):5329–5330; (b) Göbel M, Klapötke TM (2007) 2,2,2-trinitroethanol. Acta Crystallogr C C63:562–564

    Google Scholar 

  19. Herzog L, Gold MH, Geckler RD (1951) The chemistry of aliphatic dinitro compounds. I. The Michael reaction. J Am Chem Soc 73:749–751

    Article  Google Scholar 

  20. (a) Duden P, Ponndorf G (1905) Über aci-Dinitro-Alkohole. Ber Dtsch Chem Ges 38:2031–2036; (b) Klapötke TM, Krumm B, Moll R (2013) Polynitroethyl- and fluorodinitroethyl substituted boron esters. Chem Eur J 19:12113–12123

    Google Scholar 

  21. (a) Kettner MA, Klapötke TM (2014) 5,5'-Bis-(trinitromethyl)-3,3'-bi-(1,2,4-oxadiazole): A Stable Ternary CNO-compound with high density. Chem Commun 50(18):2268–2270; (b) Kettner MA, Karaghiosoff K, Klapötke TM, Sućeska M, Wunder S (2014) 3,3'-Bi-(1,2,4-oxadiazoles) featuring the fluorodinitromethyl and trinitromethyl groups. Chem Eur J 20:7622–7631

    Google Scholar 

  22. Klapötke TM, Piercey DG, Stierstorfer J (2012) Amination of energetic anions: high-performing energetic materials. Dalton Trans 41:9451–9459

    Article  Google Scholar 

  23. (a) Axthammer QJ, Klapötke TM, Krumm B, Moll R, Rest SF (2014) The energetic nitrocarbamate O2NN(H)CO[OCH2C(NO2)3] derived from phosgene. Z Anorg Allg Chem 640:76–83; (b) Axthammer QJ, Krumm B, Klapötke TM (2015) Synthesis of energetic nitrocarbamates from polynitro alcohols and their potential as high energetic oxidizers. J Org Chem 80(12):6329–6335

    Google Scholar 

  24. Klapoetke TM, Krumm B, Moll R, Penger A, Sproll SM, Berger RJF, Hayes SA, Mitzel NW (2013) Structures of energetic acetylene derivatives HC≡CCH2ONO2, (NO2)3CCH2C≡CCH2C(NO2)3 and trinitroethane, (NO2)3CCH3. Z Naturforsch B 68: 719–731

    Google Scholar 

  25. Klapötke TM, Krumm B, Moll R, Rest SF (2011) CHNO based molecules containing 2,2,2-trinitroethoxy moieties as possible high energy dense oxidizers. Z Anorg Allg Chem 637:2103–2110

    Article  Google Scholar 

  26. Klapötke TM, Krumm B, Rest SF, Sućeska M (2014) Polynitro containing energetic materials based on carbonyldiisocyanate and 2, 2-dinitropropane-1, 3-diol. Z Anorg Allg Chem 640: 84–92

    Article  Google Scholar 

  27. Baumann A, Erbacher A, Evangelisti C, Klapötke TM, Krumm B, Rest SF, Reynders M, Sproll V (2013) Multiply nitrated high-energy dense oxidizers derived from the simple amino acid glycine. Chem Eur J 19(46):15627–15638

    Article  Google Scholar 

  28. Aas B, Kettner MA, Klapötke TM, Suceska M, Zoller C (2013) Asymmetric carbamate derivatives containing secondary nitramine, 2,2,2-Trinitroethyl, and 2-Fluoro-2,2-dinitroethyl moieties. Eur J Inorg Chem 35:6028–6036

    Google Scholar 

  29. (a) Feierfeil J, Kettner MA, Klapötke TM, Sućeska M, Wunder S (2014) Proceeding of the 17th seminar on new trends in research of energetic materials (NTREM), Pardubice, 9–11 Apr 2014; (b) Kettner MA, Klapötke TM (2015) New energetic polynitrotetrazoles. Chem Eur J 21(9):3755–3765

    Google Scholar 

  30. Chavez D, Klapötke TM, Parrish D, Piercey DG, Stierstorfer J (2014) The synthesis and energetic properties of 3,4-Bis(2,2,2-trinitroethylamino)furazan (BTNEDAF). Propellants Explos Pyrotech 39:641–648

    Article  Google Scholar 

  31. Klapötke TM, Krumm B, Rest SF, Reynders M, Scharf R (2013) (2-Fluoro-2,2-dinitroethyl)-2,2,2-trinitroethylnitramine: a possible high-energy dense oxidizer. (2013) Eur J Inorg Chem 34:5871–5878

    Google Scholar 

  32. Klapötke TM, Krumm B, Moll R, Rest SF, Schnick W, Seibald M (2013) Asymmetric fluorodinitromethyl derivatives of 2,2,2-trinitroethyl N-(2,2,2-trinitroethyl)carbamate. J Fluor Chem 156:253–261

    Article  Google Scholar 

  33. Klapötke TM, Krumm B, Scherr M, Spieß G, Steemann FX (2008) Facile synthesis and crystal structure of 1,1,1,3-tetranitro-3-azabutane. Z Anorg Allg Chem 634:1244–1246

    Article  Google Scholar 

  34. (a) Bundesanstalt für Materialforschung (BAM) (2008) http://www.bam.de; laying down the test methods pursuant to Regulation (EC) No. 1907/2006 of the European Parliament and of the Council on the Evaluation, Authorization and Restriction of Chemicals (REACH), ABl. L 142; (b) NATO standardization agreement (STANAG) on explosives, impact tests, no. 4489, 1st edn, 17 Sept 1999; (c) NATO Standardization Agreement (STANAG) on explosives, friction tests, no. 4487, 1st edn, 22 Aug 2002; (d) Klapötke TM, Krumm B, Mayr N, Steemann FX, Steinhauser G (2010) Hands on explosives: safety testing of protective measures. Saf Sci 48:28–34

  35. (a) Montgomery JJA, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542; (b) Ochterski JW, Petersson GA, Montgomery JJA (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104:2598–2619

    Google Scholar 

  36. (a) Sućeska M (2014) EXPLO5, Version 6.02, Zagreb; (b) Sućeska M (1991) Calculation of the detonation properties of C-H-N-O explosives. Propellants Explos Pyrotech 16:197–202; (c) Sućeska M (1999) Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos Pyrotech 24:280–285; (d) Suceska M, Ang HG, Chan HY (2011) Modification of BKW EOS introducing density-dependent molecular covolumes concept. Mater Sci Forum 673:47–52

    Google Scholar 

  37. NASA, Space shuttle news reference, 2-20–22-21, http://de.scribd.com/doc/17005716/NASA-Space-Shuttle-News-Reference-1981; (b) NASA, press release: STS-122 The Voyage of Columbus, 2008, pp 82–84, http://www.nasa.gov/pdf/203212main.sts122 presskit2.pdf

  38. Klapötke TM, Krumm B, Moll R, Rest SF, Sućeska M (2014) Fluorodinitroethyl ortho-carbonate and -formate as potential high energy dense oxidizers. Z Naturforsch B 69:8–16

    Google Scholar 

  39. (a) Kamlet MJ, Shipp KG, Hill ME (1968) US Patent 3388147; (b) Sheremetev AB, Yudin IL (2005) Synthesis of 2-R-2,2-dinitroethanol orthoesters in ionic liquids. Mendeleev Commun 15:204–205; (c) Mueller KF, Renner RH, Gilligan WH, Adolph HG, Kamlet MJ (1983) Thermal stability/structure relations of some polynitroaliphatic explosives. Combust Flame 50:341–349; (d) Hill ME (1967) US Patent 3306939; (e) Hill ME, Shipp KG (1970) US Patent 3526667

    Google Scholar 

  40. (a) Grakauskas V, Albert AH (1981) Polynitroalkyltetrazoles. J Heterocycl Chem 18:1477–1479; (b) Fokin AV, Studnev YN, Rapkin AI, Komarov VA, Verenikin OV, Potarina TM (1981) Synthesis and some properties of 5-fluorodinitromethyl- and 5-difluoronitromethyltetrazoles. Izv Akad Nauk SSSR Ser Khim 7:1592–1595; (c) Christe KO, Haiges R (2013) Energetic high-nitrogen compounds: 5-(Trinitromethyl)-2H-tetrazole and -tetrazolates, preparation, characterization, and conversion into 5-(dinitromethyl) tetrazoles. Inorg Chem 52:7249–7260

    Google Scholar 

  41. (a) Kamlet MJ (1959) NAVORD Rep. 6206, US Naval Ordnance Lab, Whiteoak; (b) Agrawal JP, Hodgson RD (2006) Organic chemistry of explosives, 1st edn. Wiley, Chichester, p 33

    Google Scholar 

  42. Luk’yanov OA, Pokhvisneva GV (1991) (2,2,2-Trinitroethoxy)acetic acid and its derivatives. Izv Akad Nauk SSSR Ser Khim 11:2545–2548

    Google Scholar 

  43. (a) Haiges R, Jones CB, Christe KO (2013) Energetic Bis(3,5-dinitro-1H-1,2,4-triazolyl)dihydro- and dichloroborates and Bis(5-nitro-2H-tetrazolyl)-, Bis(5-(trinitromethyl)-2H-tetrazolyl)-, and Bis(5-(fluorodinitromethyl)-2H-tetrazolyl)dihydroborate. Inorg Chem 52:5551–5558; (b) Belanger-Chabot G, Rahm M, Haiges R, Christe KO (2013) [BH3C(NO2)3]−: the first room-temperature stable (trinitromethyl)borate. Angew Chem Int Ed, 52:11002–11006; (c) Haiges R, Christe KO (2013) Energetic High-nitrogen compounds: 5-(trinitromethyl)-2h-tetrazole and - tetrazolates, preparation, characterization, and conversion into 5-(dinitromethyl) tetrazoles. Inorg Chem 52:7249–7260

    Google Scholar 

  44. Khutoretsky VM, Matveeva NB, Gakh AA (2000) Hexanitroisobutene dianion salts. Angew Chem Int Ed 39(14):2545–2547

    Article  Google Scholar 

  45. (a) Yin P, Parrish DA, Shreeve JM (2014) Bis(nitroamino-1,2,4-triazolates): N-bridging strategy toward insensitive energetic materials. Angew Chem Int Ed 53:12889–12892; (b) Thottempudi V, Zhang J, He C, Shreeve JM (2014) Azo-substituted 1,2,4-oxadiazoles as insensitive energetic materials. RSC Adv 4:50361–50364

    Google Scholar 

  46. Vo TT, Parrish DA, Shreeve JM (2014) Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate. J Am Chem Soc 136(34):11934–11937

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this work by the Ludwig-Maximilian University of Munich (LMU), the U.S. Army Research Laboratory (ARL) under grant no. W911NF-09-2-0018, the Armament Research Development and Engineering Center (ARDEC) under grant nos. W911NF-12-1-0467 and W911NF-12-1-0468, and the Office of Naval Research (ONR) under grant nos. ONR.N00014-10-1-0535 and ONR.N00014-12-1-0538 is gratefully acknowledged. The authors acknowledge collaborations with Dr. Mila Krupka (OZM Research, Czech Republic) in the development of new testing and evaluation methods for energetic materials and with Dr. Muhamed Suceska (Brodarski Institut, Croatia) in the development of new computational codes to predict the detonation and propulsion parameters of novel energetic materials. We are indebted to and thank Drs. Betsy M. Rice and Brad Forch (ARL, Aberdeen, Proving Ground, MD) for many inspired discussions. The co-workers associated with this project are Regina Scharf, Camilla Evangelisti, Quirin J. Axthammer, Sebastian F. Rest, Dr. Michael Göbel, Dr. Davin Piercey, and Dr. Richard Moll in the course of their doctoral research studies. They are gratefully thanked for their challenging synthetic efforts and for forming a flexible “Oxidizer Team.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Klapötke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kettner, M.A., Klapötke, T.M. (2017). Synthesis of New Oxidizers for Potential Use in Chemical Rocket Propulsion. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics