Skip to main content

Formulation Factors and Properties of Condensed Combustion Products

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

A review of state-of-the-art experimental results concerning the influence of various formulation factors on the properties of the condensed combustion products (agglomerates and smoke oxide particles) formed at the burning propellant surface is provided. The influence of the properties of binder, oxidizer, and metal fuel is investigated. Analysis is carried out with reference to the following components: active and inactive binder, ammonium perchlorate, ammonium nitrate (pure and phase stabilized), ammonium dinitramide, cyclotrimethylenetetranitramine, micro-sized and nano-sized aluminum, aluminum with a polymeric, and refractory covering. The proposed analysis is based on the formulated general physical picture of the formation of the condensed products. It is shown that the properties of the condensed products (in terms of size, chemical composition, and internal structure) depend on properties of the burning propellant surface layer, which in turn depend on the properties of the propellant components. The importance of formation of a surface layer and the properties of such structures as a skeleton layer is underlined. The results of these research activities open the possibility to take reasonable formulation decisions when creating new solid propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADN:

Ammonium dinitramide

AN:

Ammonium nitrate

AP:

Ammonium perchlorate

APPRET:

Cl2Si[OCH2(CF2-CF2)2H2]2

CCP:

Condensed combustion products

CL-20:

Hexanitrohexaazaisowurtzitane

CS:

Carbonaceous skeleton

FCOS:

Fluorine-containing organic substance

HMX:

Cyclotrimethylenetetranitramine

HNF:

Hydrazinium nitroformate

P:

Pressure

PMFA:

Polymethylfluoroacrylate

SL:

Skeleton layer

SOP:

Smoke oxide particles

References

  1. Pokhil PM, Belyaev AF, Frolov YV et al (1974) Gorenie porohsobraznykh metallov v activnykh sredakh (combustion of powdered materials in active media). Nauka, Moscow

    Google Scholar 

  2. Gladun VD, Frolov YV, Kashporov LY (1977) Aglomeraziya porohsobraznogo metalla pri gorenii smesevykh kondensirovannykh sistem (agglomeration of powdered metal at burning of composite condensed systems). OIKhPh AN SSSR, Chernogolovka

    Google Scholar 

  3. Frolov YV, Pokhil PF, Logachev VS (1972) Ignition and combustion of powdered aluminum in high-temperature gaseous media and in a composition of heterogeneous condensed systems. Combust Explosion Shock Waves 8(2):38–45

    Article  Google Scholar 

  4. Glotov OG, Zyryanov VY (1995) Condensed combustion products of aluminized propellants. 1. A technique for investigating the evolution of disperse-phase particles. Combust Explosion Shock Waves 31(1):72–78

    Article  Google Scholar 

  5. Glotov OG, Yagodnikov DA, Vorob’ev VS et al (2007) Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration. Combust Explosion Shock Waves 43(3):320–333

    Article  Google Scholar 

  6. Glotov OG (2007) Condensed combustion products of aluminized propellants. IV. Effect of the nature of nitramines on aluminum agglomeration and combustion efficiency. Combust Explosion Shock Waves 42(4):436–449

    Article  Google Scholar 

  7. Glotov OG, Zarko VE, Beckstead MW (2000) Agglomerated and oxide particle generated in combustion of ALEX containing solid propellants. In: Proceedings of the 31st international annual conference of ICT, June 2000, paper 130

    Google Scholar 

  8. Price EW, Pack CJ, Sigman RK, Sambamurthi (1981) The nature and combustion of agglomerates. In: Proceedings of the 18th JANNAF combustion meeting, V. III, Chemical Propulsion Information Agency. Laurel, p 121–145

    Google Scholar 

  9. Price EW (1984) Combustion of metallized propellant. Progress in astronautics and aeronautics. In: Kuo K, Summerfield M (eds) Fundamentals of solid propellant combustion, vol 90. AIAA, New York, pp 478–513

    Google Scholar 

  10. Price EW, Sigman RK (2000) Chapter 2.18: Combustion of aluminized solid propellants. In: Yang V, Brill TB, Ren WZ (eds) Progress in astronautics and aeronautics, vol 185. American Institute of Aeronautics and Astronautics, Reston, pp 663–687

    Google Scholar 

  11. Dokhan A, Seitzman JM, Price EW, Sigman RK (2001) The effects of Al particle size on the burning rate and residual oxide in aluminized propellants. In: AIAA Paper 2001–3581, 37th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. Salt Lake City, 8–11 July 2001

    Google Scholar 

  12. Dokhan A, Price EW, Sigman RK, Seitzman JM (2002) Combustion mechanism of bimodal and ultra-fine aluminum in AP solid propellant. In: AIAA Paper 2002–4173, 38th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. Indianapolis, 7–10 July 2002

    Google Scholar 

  13. DeLuca LT (2007) Burning of aluminized solid rocket propellants: from micrometric to nanometric fuel size. In: Ping H, Yajun W, Shengcai LI (eds) Theory and practice of energetic materials, Vol. VII, proceedings of the 2007 international autumn seminar on propellants, explosives and pyrotechnics, supported by National Natural Science Foundation of China (NSFC). Science Press, Beijing, pp 277–289

    Google Scholar 

  14. DeLuca LT, Galfetti L (2008) Burning of metallized composite solid rocket propellants: from micrometric to nanometric aluminum size. In: Book of proceedings 3rd Asian Joint Conference on Propulsion and Power (AJCPP) 2008 – Gyeongju. 06–08 Mar 2008

    Google Scholar 

  15. DeLuca LT, Galfetti L, Maggi F et al (2008) Burning of metallized composite solid rocket propellants: toward nanometric fuel size. In: ESA space propulsion 2008 – book of proceedings. Heraclion. 05–09 May 2008

    Google Scholar 

  16. Cerri S, Galfetti L, DeLuca LT et al (2008) Experimental investigation of the condensed combustion products of micro aluminized solid rocket propellants. AIAA Paper 07-5766, 08-11 July 07

    Google Scholar 

  17. Babuk VA, Vasilyev VA, Malakhov MS (1999) Condensed combustion products at the burning surface of aluminized solid propellant. J Propuls Power 15(6):783–794

    Google Scholar 

  18. Babuk VA, Vasilyev VA, Sviridov VV (2000) Chapter 2.21: Formation of condensed combustion products at the burning surface of solid rocket propellant. In: Yang V, Brill TB, Ren WZ (eds) Solid propellant chemistry, combustion, and motor interior ballistics, vol 185, Progress in astronautics and aeronautics. American Institute of Aeronautics and Astronautics, Reston, pp 749–776

    Google Scholar 

  19. Babuk VA, Vasilyev VA, Sviridov VV (2001) Propellant formulation factors and metal agglomeration in combustion of aluminized solid rocket propellant. Combust Sci Technol 163:261–289

    Article  Google Scholar 

  20. Babuk VA, Vasilyev VA, Glebov AA et al (2004) Combustion mechanisms of AN-based aluminized solid rocket propellants. In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA (eds) Novel energetic materials and applications. Grafiche GSS, Bergamo, pp 44–1–44–20, Dec. 2004, paper 44

    Google Scholar 

  21. Babuk VA, Dolotkazin Ildar N, Glebov Andrey A (2005) Burning mechanism of aluminized solid rocket propellants based on energetic binders. Propellants Explos Pyrotechnics 30(4):281–290

    Article  Google Scholar 

  22. Babuk VA, Glebov A, Arkhipov VA et al (2005) Dual-oxidizer solid rocket propellants for low-cost access to space. In: DeLuca LT, Sackheim RL, Palaszewski BA (eds) In-space propulsion. Grafiche GSS, Italy, pp 15–1–15–20, Nov. 2005, paper 15

    Google Scholar 

  23. Babuk VA (2007) Problems in studying formation of smoke oxide particles in combustion of aluminized solid propellants. Combust Explosion Shock Waves 43(1):38–45

    Article  Google Scholar 

  24. Babuk VA, Glebov A, Dolotkazin I et al (2009) Condensed combustion products from burning of nanoaluminum-based propellants: properties and formation mechanism. In: EUCASS advances in aerospace sciences. vol 1 – Propulsion physics, EUCASS, Torus Press, EDP Sciences, Paris, 2009, pp 3–16

    Google Scholar 

  25. Babuk VA, Vasil’ev VA, Potekhin AN (2009) Experimental investigation of agglomeration during combustion of aluminized solid propellants in an acceleration field. Combust Explosion Shock Waves 45(1):32–39

    Article  Google Scholar 

  26. Babuk VA, Dolotkazin I, Gamsov A, Glebov A, DeLuca LT, Galfetti L (2009) Nanoaluminum as a solid propellant fuel. J Propuls Power 25(2):482–489

    Article  Google Scholar 

  27. Babuk VA (2009) Properties of the surface layer and combustion behavior of metalized solid propellants. Combust Explosion Shock Waves 45(4):486–494

    Article  Google Scholar 

  28. Babuk VA, Dolotkazin IN, Sviridov VV (2003) Simulation of agglomerate dispersion in combustion of aluminized solid propellants. Combust Explosion Shock Waves 39(2):195–203

    Article  Google Scholar 

  29. Babuk VA, Dolotkazin Ildar N, Nizyaev Alexander A (2013) Analysis and synthesis of solutions for the agglomeration process modeling. In: EUCASS book series advances in aerospace sciences. vol 4 – Progress in propulsion physics, EUCASS, Torus Press, EDP Sciences, Paris, 2013, pp 33–58

    Google Scholar 

  30. Babuk VA, Nizyaev AA (2014) Modelirovanie structury smesevykh tverdykh topliv i problema opisaniya prozessa aglmerazii (Modeling of composite solid propellant structure and problem of the description of agglomeration process). Khimicheskaya Phizika I Mesoskopiya 16(1): 31–42

    Google Scholar 

  31. Meleshko VY, Pavloves GY, Sarabiev VI, Mikaskin DA (2012) Sposoby kapsulyazii nanorazmernykh komponentov energeticheskikh kondensirovannykh system (ways of protection nano-sized components of the energy condensed systems). Izvestia RARAN 3:22–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery A. Babuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babuk, V.A. (2017). Formulation Factors and Properties of Condensed Combustion Products. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics