Skip to main content

Vocal Production by Terrestrial Mammals: Source, Filter, and Function

  • Chapter
  • First Online:
Vertebrate Sound Production and Acoustic Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 53))

Abstract

In little over two decades, researchers have moved from a situation in which most studies of terrestrial mammal vocal signals focused on conspicuous characteristics, such as their rate of occurrence, and where the spectral acoustic variation was largely ignored or poorly quantified, to a field of study in which there is a much better understanding of the nature and function of the acoustic parameters that compose vocalizations. The source-filter theory, originally developed for the analysis of speech signals, has played a large role in this progress. Understanding how the acoustic variability of vocalizations is grounded within their mechanism of production has enabled researchers to predict the type of information that vocal signals are likely to contain, and to predict their co-variation with morphological and/or physiological attributes of callers. Moreover, the powerful theoretical platform derived from the source-filter theory not just conceptually supports the formulation of multilevel hypotheses, but also paves the way to develop the corresponding methodologies needed to address them. Although the full range of acoustic diversity of terrestrial mammal signals has yet to be explored, this chapter draws together a wealth of research conducted over the last two decades, and describes how source- and filter-related acoustic components encode functionally relevant information in the vocal communication systems of terrestrial mammal and how selection pressures have led to the evolution of anatomical innovations that enable animals to produce exaggerated vocal traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apicella, C. L., & Feinberg, D. R. (2009). Voice pitch alters mate-choice-relevant perception in hunter-gatherers. Proceedings of the Royal Society B: Biological Sciences, 276, 1077–1082.

    Article  PubMed  PubMed Central  Google Scholar 

  • Apicella, C. L., Feinberg, D. R., & Marlowe, F. W. (2007). Voice pitch predicts reproductive success in male hunter-gatherers. Biology Letters, 3, 682–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au, W. W., & Suthers, R. A. (2014). Production of biosonar signals: Structure and form. In A. Surlykke, P. Nachtigall, R. R. Fay, & A. N. Popper (Eds.), Biosonar (pp. 61–105). New York: Springer.

    Google Scholar 

  • August, P., & Anderson, J. (1987). Mammal sounds and motivation-structural rules: A test of the hypothesis. Journal of Mammalogy, 68, 1–9.

    Article  Google Scholar 

  • Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70, 614–636.

    Article  CAS  PubMed  Google Scholar 

  • Beckford, N. S., Rood, S. R., Schaid, D., & Schanbacher, B. (1985). Androgen stimulation and laryngeal development. The Annals of Ontology, Rhinology, and Laryngology, 94, 634–640.

    CAS  Google Scholar 

  • Blumstein, D. T., & Munos, O. (2005). Individual, age and sex-specific information is contained in yellow-bellied marmot alarm calls. Animal Behaviour, 69, 353–361.

    Article  Google Scholar 

  • Blumstein, D. T., & Recapet, C. (2009). The sound of arousal: The addition of novel non-linearities increases responsiveness in marmot alarm calls. Ethology, 115, 1074–1081.

    Article  Google Scholar 

  • Bradbury, J. (1977). Lek mating behavior in the hammer-headed bat. Zeitschrift für Tierpsychologie, 45, 225–255.

    Article  Google Scholar 

  • Briefer, E. F. (2012). Vocal expression of emotions in mammals: Mechanisms of production and evidence. Journal of Zoology, 288, 1–20.

    Article  Google Scholar 

  • Briefer, E. F., & McElligott, A. G. (2011). Indicators of age, body size and sex in goat kid calls revealed using the source-filter theory. Applied Animal Behaviour Science, 133, 175–185.

    Article  Google Scholar 

  • Bruckert, L., Liénard, J., Lacroix, A., Kreutzer, M., & Leboucher, G. (2006). Women use voice parameters to assess men’s characteristics. Proceedings of the Royal Society B: Biological Sciences, 273, 83–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cartei, V., Bond, R., & Reby, D. (2014). What makes a voice masculine: Physiological and acoustical correlates of women’s ratings of men’s vocal masculinity. Hormones and Behavior, 66, 569–576.

    Article  PubMed  Google Scholar 

  • Carter, G. G., Skowronki, M. D., Faure, P. A., & Fenton, B. (2008). Antiphonal calling allows individual discrimination in white-winged vampire bats. Animal Behaviour, 76, 1343–1355.

    Article  Google Scholar 

  • Chan, R. W., Siegmund, T., & Zhang, K. (2009). Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria. Logopedics, Phoniatrics, Vocology, 34, 181–189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., Ellis, W. A. H., Brumm, J., Nilsson, K., & Fitch, W. T. (2012a). Female koalas prefer bellows in which lower formants indicate larger males. Animal Behaviour, 84, 1565–1571.

    Article  Google Scholar 

  • Charlton, B. D., Ellis, W. A. H., Larkin, R., & Fitch, W. T. (2012b). Perception of size-related formant information in male koalas (Phascolarctos cinereus). Animal Cognition, 15, 999–1006.

    Article  PubMed  Google Scholar 

  • Charlton, B. D., Ellis, W. A. H., McKinnon, A. J., Brumm, J., Nilsson, K., & Fitch, W. T. (2011a). Perception of male caller identity in koalas (Phascolarctos cinereus): Acoustic analysis and playback experiments. PLoS One, 6, e20329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., Ellis, W. A. H., McKinnon, A., Cowin, G. J., Brumm, J., Nilsson, K., et al. (2011b). Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: Honesty in an exaggerated trait. Journal of Experimental Biology, 214, 3414–3422.

    Article  PubMed  Google Scholar 

  • Charlton, B. D., Frey, R., McKinnon, A., Fritsch, G., Fitch, W. T., & Reby, D. (2013a). Koalas use a novel vocal organ to produce unusually low-pitched mating calls. Current Biology, 23, R1035–R1036.

    Article  CAS  PubMed  Google Scholar 

  • Charlton, B. D., Keating, J. L., Kersey, D., Rengui, L., Huang, Y., & Swaisgood, R. R. (2011c). Vocal cues to male androgen levels in giant pandas. Biology Letters, 7, 71–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., Reby, D., & McComb, K. (2007a). Female perception of size-related formant shifts in red deer (Cervus elaphus). Animal Behaviour, 74, 707–714.

    Article  Google Scholar 

  • Charlton, B. D., Reby, D., & McComb, K. (2007b). Female red deer prefer the roars of larger males. Biology Letters, 3, 382–385.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., Reby, D., & McComb, K. (2008). Effect of combined source (F0) and filter (formant) variation on red deer hind responses to male roars. Journal of the Acoustical Society of America, 123, 2936–2943.

    Article  PubMed  Google Scholar 

  • Charlton, B. D., Swaisgood, R. R., Zhihe, Z., & Snyder, R. J. (2012c). Giant pandas attend to androgen-related variation in male bleats. Behavioral Ecology and Sociobiology, 66, 969–974.

    Article  Google Scholar 

  • Charlton, B. D., Taylor, A. M., & Reby, D. (2013b). Are men better than women at acoustic size judgements? Biology Letters, 9(4), 20130270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., Whisson, D. A., & Reby, D. (2013c). Free-ranging male koalas use size-related variation in formant frequencies to assess rival males. PLoS One, 8(7), e70279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., Wyman, M., Locatelli, Y., Fitch, W. T., & Reby, D. (2014). Do red deer hinds prefer stags that produce harsh roars in mate choice contexts? Journal of Zoology, 293, 57–62.

    Article  Google Scholar 

  • Charlton, B. D., Zhang, Z. H., & Snyder, R. J. (2010). Giant pandas perceive and attend to formant frequency variation in male bleats. Animal Behaviour, 79, 1221–1227.

    Article  Google Scholar 

  • Charlton, B. D., Zhihe, Z., & Snyder, R. J. (2009a). The information content of giant panda, Ailuropoda melanoleuca, bleats: Acoustic cues to sex, age and size. Animal Behaviour, 78, 893–898.

    Article  Google Scholar 

  • Charlton, B. D., Zhihe, Z., & Snyder, R. J. (2009b). Vocal cues to identity and relatedness in giant pandas (Ailuropoda melanoleuca). Journal of the Acoustical Society of America, 126, 2721–2732.

    Article  PubMed  Google Scholar 

  • Charrier, I., Mathevon, N., & Jouventin, P. (2002). How does a fur seal mother recognize the voice of her pup? An experimental study of Arctocephalus tropicalis. Journal of Experimental Biology, 205, 603–612.

    PubMed  Google Scholar 

  • Chiba, T., & Kajiyama, M. (1941). The vowel: Its nature and structure. Tokyo: Tokyo-Keiseikan.

    Google Scholar 

  • Childers, D. G., & Lee, C. K. (1991). Vocal quality factors: Analysis, synthesis, and perception. Journal of the Acoustical Society of America, 90, 2394–2410.

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock, T., & Albon, S. (1979). The roaring of red deer and the evolution of honest advertising. Behavior, 69, 145–170.

    Article  Google Scholar 

  • Cohen, J. A., & Fox, M. W. (1976). Vocalizations in wild canids and possible effects of domestication. Behavioral Proceedings, 1, 77–92.

    Article  CAS  Google Scholar 

  • Dabbs, J. M., & Mallinger, A. (1999). High testosterone levels predict low voice pitch among men. Personality and Individual Differences, 27, 801–804.

    Article  Google Scholar 

  • de Boer, B., Wich, S. A., Hardus, M. E., & Lameira, A. R. (2015). Acoustic models of orangutan hand-assisted alarm calls. Journal of Experimental Biology, 218, 907–914.

    Article  PubMed  Google Scholar 

  • Drahota, A., Costall, A., & Reddy, V. (2008). The vocal communication of different kinds of smile. Speech Communication, 50, 278–287.

    Article  Google Scholar 

  • Elemans, C., Zaccarelli, R., & Herzel, H. (2008). Biomechanics and control of vocalizations in a non-songbird. Journal of the Royal Society Interface, 5, 691–703.

    Article  PubMed Central  Google Scholar 

  • Evans, C. S. (1997). Referential signals. Perpectives in Ethology, 12, 99–143.

    Article  Google Scholar 

  • Evans, S., Neave, N., Wakelin, D., & Hamilton, C. (2008). The relationship between testosterone and vocal frequencies in human males. Physiology and Behavior, 93, 783–788.

    Article  CAS  PubMed  Google Scholar 

  • Fant, G. (1960). Acoustic theory of speech production. The Hague, The Netherlands: Mouton.

    Google Scholar 

  • Faragó, T., Andics, A., Devecseri, V., Kis, A., Gács, M., & Miklósi, A. (2014). Humans rely on the same rules to assess emotional valence and intensity in conspecific and dog vocalizations. Biology Letters, 10, 20130926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faragó, T., Pongrácz, P., Range, F., Virányi, Z., & Miklósi, A. (2010). ‘The bone is mine’: Affective and referential aspects of dog growls. Animal Behaviour, 79, 917–925.

    Article  Google Scholar 

  • Feighny, J. J., Williamson, K. E., & Clarke, J. A. (2006). North American elk bugle vocalizations: Male and female bugle call structure and context. Journal of Mammalogy, 87, 1072–1077.

    Article  Google Scholar 

  • Feinberg, D. R., Jones, B. C., Little, A. C., Burt, D. M., & Perrett, D. I. (2005). Manipulations of fundamental and formant frequencies affect the attractiveness of human male voices. Animal Behaviour, 69, 561–568.

    Article  Google Scholar 

  • Fischer, J., Kitchen, D. M., Seyfarth, R. M., & Cheney, D. L. (2004). Baboon loud calls advertise male quality: Acoustic features and relation to rank, age, and exhaustion. Behavioral Ecology and Sociobiology, 56, 140–148.

    Article  Google Scholar 

  • Fitch, W. T. (1994). Vocal tract length perception and the evolution of language. PhD thesis, Brown University.

    Google Scholar 

  • Fitch, W. T. (1997). Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Journal of the Acoustical Society of America, 102, 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. T. (2000a). Skull dimensions in relation to body size in non-human primates: The causal bases for acoustic allometry. Zoology, 103, 40–58.

    Google Scholar 

  • Fitch, W. T. (2000b). The phonetic potential of nonhuman vocal tracts: Comparative cineradiographic observations of vocalizing animals. Phonetica, 57, 205–218.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. T. (2002). Comparative vocal production and the evolution of speech: Reinterpreting the descent of the larynx. In A. Wray (Ed.), The transition to language (pp. 21–45). Oxford, England: Oxford University Press.

    Google Scholar 

  • Fitch, W. T. (2006). Production of vocalizations in mammals. In K. Brown (Ed.), Encyclopedia of language and linguistics (pp. 115–121). Oxford, England: Elsevier.

    Chapter  Google Scholar 

  • Fitch, W. T., & Fritz, J. (2006). Rhesus macaques spontaneously perceive formants in conspecific vocalizations. Journal of the Acoustical Society of America, 120, 2132–2141.

    Article  PubMed  Google Scholar 

  • Fitch, W. T., & Giedd, J. (1999). Morphology and development of the human vocal tract: A study using magnetic resonance imaging. Journal of the Acoustical Society of America, 106, 1511–1522.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63, 407–418.

    Article  Google Scholar 

  • Fitch, W. T., & Reby, D. (2001). The descended larynx is not uniquely human. Proceedings of the Royal Society B: Biological Sciences, 268, 1669–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, M. (1970). A comparative study of the development of facial expressions in canids: Wolf, coyote and foxes. Behavior, 35, 49–73.

    Article  Google Scholar 

  • Frey, R., & Gebler, A. (2003). The highly specialized vocal tract of the male Mongolian gazelle (Procapra gutturosa). Journal of Anatomy, 203, 451–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey, R., Volodin, I., Volodina, E., Soldatova, N. V., & Juldaschev, E. T. (2011). Descended and mobile larynx, vocal tract elongation and rutting roars in male goitred gazelles (Gazella subgutturosa). Journal of Anatomy, 218, 566–585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamba, M., Colombo, C., & Giacoma, C. (2011). Acoustic cues to caller identity in lemurs: A case study. Journal of Ethology, 30, 191–196.

    Article  Google Scholar 

  • Garcia, M., Charlton, B. D., Wyman, M. T., Fitch, T. W., & Reby, D. (2013). Do red deer stags (Cervus elaphus) use roar fundamental frequency (f0) to assess rivals? PLoS One, 8(12), e83946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia, M., Wyman, M. T., Charlton, B. D., Fitch, T. W., & Reby, D. (2014). Response of red deer stags (Cervus elaphus) to playback of harsh versus common roars. NaturwissenschaftenI, 101, 851–854.

    Article  CAS  Google Scholar 

  • Ghazanfar, A., Turesson, H., Maier, J., van Dinther, R., Patterson, R., & Logothetis, N. (2007). Vocal tract resonances as indexical cues in the rhesus monkeys. Current Biology, 17, 425–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  • Gilbert, J., Dalmont, J., Potier, R., & Reby, D. (2014). Is nonlinear propagation responsible for the brassiness of elephant trumpet calls? Acta Acustica united with Acustica, 100, 734–738.

    Article  Google Scholar 

  • Griesbach, R. (1999). Estimation of speaker height from formant frequencies. International Journal of Speech, Language, and the Law, 6, 265–277.

    Article  Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press.

    Google Scholar 

  • Hardus, M. E., Lameira, A. R., van Schaik, C. P., & Wich, S. A. (2009). Tool use in wild orang-utan modified sound production: A functionally deceptive innovation? Proceedings of the Royal Society of London B: Biological Sciences, 276, 3689–3694.

    Article  Google Scholar 

  • Harries, M. L. L., Walker, J. M., Williams, D. M., Hawkins, S., & Hughes, I. A. (1997). Changes in the male voice at puberty. Archives of Disease in Childhood, 7, 445–447.

    Article  Google Scholar 

  • Harris, T. R., Fitch, W. T., Goldstein, L. M., & Fashing, P. J. (2006). Black and white colobus monkey (Colobus guereza) roars as a source of both honest and exaggerated information about body mass. Ethology, 112, 911–920.

    Article  Google Scholar 

  • Herbst, C. T. (2014). Glottal efficiency of periodic and irregular in vitro red deer voice production. Acta Acustica united with Acustica, 100, 724–733.

    Article  Google Scholar 

  • Hirano, M., Ohala, J., & Vennard, W. (1969). The function of laryngeal muscles in regulating fundamental frequency and intensity of phonation. Journal of Speech and Hearing Research, 12, 616–628.

    Article  CAS  PubMed  Google Scholar 

  • Hodges-Simeon, C. R., Gaulin, S. J. C., & Puts, D. A. (2010). Different vocal parameters predict perceptions of dominance and attractiveness. Human Nature, 21, 406–427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollien, H. (1960). Vocal pitch variation related to changes in vocal fold length. Journal of Speech and Hearing Research, 3, 150–156.

    Article  Google Scholar 

  • Huber, J. E., Stathopoulos, E. T., Curione, G. M., Ash, T. A., & Johnson, K. (1999). Formants of children, women, and men: The effects of vocal intensity variation. Journal of the Acoustical Society of America, 106, 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  • Janik, V. M., Sayigh, L., & Wells, R. (2006). Signature whistle shape conveys identity information to bottlenose dolphins. Proceedings of the National Academy of Sciences of the USA, 103, 8293–8297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelemen, G., & Sade, J. (1960). The vocal organ of the howling monkey (Alouatta palliata). Journal of Morphology, 107, 123–140.

    Article  CAS  PubMed  Google Scholar 

  • Kewley-Port, D., Li, X., Zheng, Y., & Neel, A. (1996). Fundamental frequency effects on thresholds for vowel formant discrimination. Journal of the Acoustical Society of America, 100, 2462–2470.

    Article  CAS  PubMed  Google Scholar 

  • Kidjo, N., Cargnelutti, B., Charlton, B. D., Wilson, C., & Reby, D. (2008). Vocal behavior in the endangered Corsican deer, description and phylogenetic implications. Bioacoustics, 18, 159–181.

    Article  Google Scholar 

  • Koda, H., Nishimura, T., Tokuda, I. T., Oyakawa, C., Nihonmatsu, T., & Masatka, N. (2012). Soprano singing in gibbons. American Journal of Physical Anthropology, 149, 347–355.

    Article  PubMed  Google Scholar 

  • Kuhl, P. K., & Miller, J. D. (1975). Speech-perception by chinchilla—voiced voiceless distinction in alveolar plosive consonants. Science, 190, 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Ladefoged, P. (2001). Vowels and consonants: An introduction to the sounds of languages. Oxford, England: Blackwell.

    Google Scholar 

  • Lieberman, P. (1984). The biology and evolution of language. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lieberman, P., & Blumstein, S. E. (1988). Speech physiology, speech perception, and acoustic phonetics. Cambridge, England: Cambridge University Press.

    Book  Google Scholar 

  • Lieberman, P., Crelin, E. S., & Klatt, D. H. (1972). Phonetic ability and related anatomy of the newborn and adult human, Neanderthal man, and the chimpanzee. American Anthropologist, 74, 287–307.

    Article  Google Scholar 

  • Manser, M. (2001). The acoustic structure of suricates’ alarm calls varies with predator type and the level of response urgency. Proceedings of the Royal Society of London B: Biological Sciences, 268, 2315–2324.

    Article  CAS  Google Scholar 

  • Mathevon, N., Koralek, A., Weldele, M., & Teunissen, F. E. (2010). What the hyena’s laugh tells: Sex, age, dominance and individual signature in the giggling call of Crocuta crocuta. BMC Ecology, 10, 9. doi:10.1186/1472-6785-10-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maynard-Smith, J., & Harper, D. (2003). Animal signals. Oxford, England: Oxford University Press.

    Google Scholar 

  • McAdams, S., & Rodet, X. (1988). The role of FM-induced AM in dynamic spectral profile analysis. In H. Duifhuis, J. W. Jorst, & H. P. Witt (Eds.), Basic issues in hearing (pp. 359–369). London: Academic Press.

    Google Scholar 

  • McComb, K., Reby, D., Baker, L., Moss, C., & Sayialel, S. (2003). Long-distance communication of acoustic cues to social identity in African elephants. Animal Behaviour, 66, 317–329.

    Article  Google Scholar 

  • McElligott, A. G., Birrer, M., & Vannoni, E. (2006). Retraction of the mobile descended larynx during groaning enables fallow deer bucks (Dama dama) to lower their formant frequencies. Journal of Zoology, 270, 340–345.

    Article  Google Scholar 

  • McElligott, A. G., & Hayden, T. (1999). Context-related vocalization rates of fallow bucks, Dama dama. Animal Behaviour, 58, 1095–1104.

    Article  PubMed  Google Scholar 

  • McElligott, A. G., & Hayden, T. (2001). Postcopulatory vocalizations of fallow bucks: Who is listening? Behavioral Ecology, 12, 41–46.

    Article  Google Scholar 

  • Melendez, K. V., & Feng, A. S. (2010). Communication calls of little brown bats display individual-specific characteristics. Journal of the Acoustical Society of America, 128, 919–923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mergell, P., Fitch, W. T., & Herzel, H. (1999). Modeling the role of non-human vocal membranes in phonation. Journal of the Acoustical Society of America, 105, 2020–2028.

    Article  CAS  PubMed  Google Scholar 

  • Morton, E. S. (1977). On the occurrence and significance of motivation-structural rules in some birds and mammal sounds. American Naturalist, 111, 855–869.

    Article  Google Scholar 

  • Nacci, A., Fattori, B., Basolo, F., Filice, M. E., De Jeso, K., Giovannini, L., et al. (2011). Sex hormone receptors in vocal fold tissue: A theory about the influence of sex hormones in the larynx. Folia Phoniatrica et Logopaedica, 63, 77–82.

    Article  PubMed  Google Scholar 

  • Novick, A., & Griffin, D. R. (1961). Laryngeal mechanisms in bats for the production of orientation sounds. Journal of Experimental Zoology, 148, 125–145.

    Article  CAS  PubMed  Google Scholar 

  • Ohala, J. J. (1984). An ethological perspective on common cross-language utilization of F0 of voice. Phonetica, 41, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Ohala, J. J. (1994). The frequency codes underlies the sound symbolic use of voice pitch. In L. Hinton, J. Nichols, & J. J. Ohala (Eds.), Sound symbolism (pp. 325–347). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Ohala, J. J. (1996). Ethological theory and the expression of emotion in the voice. In Proceedings of ICSLP 96, October 3–6, 1996. [4th International Conference on Spoken Language Processing, Philadelphia] 3, 1812–1815. Wilmington: University of Delaware.

    Google Scholar 

  • Ohms, V. R., Snelderwaard, P. C., ten Cate, C., & Beckers, G. J. L. (2010). Vocal tract articulation in zebra finches. PLoS One, 5(7), e11923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owings, D., & Morton, E. (1998). Animal vocal communication: A new approach. Cambridge, England: Cambridge University Press.

    Book  Google Scholar 

  • Owren, M. J., & Bernacki, R. H. (1998). Applying linear predictive coding (LPC) to frequency-spectrum analysis of animal acoustic signals. In S. L. Hopp, M. J. Owren, & C. S. Evans (Eds.), Animal acoustic communication: Sound analysis and research methods (pp. 130–162). New York: Springer.

    Google Scholar 

  • Owren, M. J., & Rendall, D. (2003). Salience of caller identity in rhesus monkey (Macaca mulatta) coos and screams: Perceptual experiments with human (Homo sapiens) listeners. Journal of Comparative Psychology, 117, 380–390.

    Article  PubMed  Google Scholar 

  • Owren, M. J., Seyfarth, R. M., & Cheney, D. L. (1997). The acoustic features of vowel-like grunt calls in chacma baboons (Papio cyncephalus ursinus): Implications for production processes and functions. Journal of the Acoustical Society of America, 101, 2951–2963.

    Article  CAS  PubMed  Google Scholar 

  • Palacios, V., Font, E., & Márquez, R. (2007). Iberian wolf howls: Acoustic structure, individual variation, and a comparison with North American populations. Journal of Mammalogy, 88, 606–613.

    Article  Google Scholar 

  • Pfefferle, D., & Fischer, J. (2006). Sounds and size: Identification of acoustic variables that reflect body size in hamadryas baboons, Papio hamadryas. Animal Behaviour, 72, 43–51.

    Article  Google Scholar 

  • Pisanski, K., Fraccaro, P. J., Tigue, C. C., O’Connor, J. M. M., Röder, S., Andrews, P. W., et al. (2014). Vocal indicators of body size in men and women: A meta-analysis. Animal Behaviour, 95, 89–99.

    Article  Google Scholar 

  • Pisanski, K., & Rendall, D. (2011). The prioritization of voice fundamental frequency or formants in listeners’ assessments of speaker size, masculinity, and attractiveness. Journal of the Acoustical Society of America, 129, 2201–2212.

    Article  PubMed  Google Scholar 

  • Pitcher, B. J., Briefer, E. F., Vannoni, E., & McElligott, A. G. (2014). Fallow bucks attend to vocal cues of motivation and fatigue. Behavioral Ecology, 25, 392–401.

    Article  Google Scholar 

  • Pitcher, B. J., Harcourt, R. G., & Charrier, I. (2012). Individual identity encoding and environmental constraints in vocal recognition of pups by Australian sea lion mothers. Animal Behaviour, 83, 681–690.

    Article  Google Scholar 

  • Plotsky, K., Rendall, D., Riede, T., & Chase, K. (2013). Radiographic analysis of vocal tract length and its relation to overall body size in two canid species. Journal of Zoology, 291(1). doi:10.1111/jzo.12048.

    Google Scholar 

  • Pongrácz, P., Molnár, C., Miklósi, A., & Csányi, V. (2005). Human listeners are able to classify dog (Canis familiaris) barks recorded in different situations. Journal of Comparative Psychology, 119, 136–144.

    Article  PubMed  Google Scholar 

  • Puts, D., Hodges, C., Cardenas, R., & Gaulin, S. (2007). Men’s voices as dominance signals: Vocal fundamental and formant frequencies influence dominance attributions among men. Evolution and Human Behavior, 28, 340–344.

    Article  Google Scholar 

  • Puts, D. A., Jones, B. C., & DeBruine, L. M. (2012). Sexual selection on human faces and voices. Journal of Sex Research, 9, 227–243.

    Article  Google Scholar 

  • Read, C., Buder, E. H., & Kent, R. D. (1992). Speech analysis systems; An evaluation. Journal of Speech and Hearing Research, 35, 314–332.

    Google Scholar 

  • Reby, D. & Charlton, B. D. (2012). Attention grabbing in red deer sexual calls. Animal Cognition, 15, 265–270.

    Google Scholar 

  • Reby, D., Charlton, B. D., Locatelli, Y., & McComb, K. (2010). Oestrous red deer hinds prefer male roars with higher fundamental frequencies. Proceedings of the Royal Society of London B: Biological Sciences, 277, 2747–2753.

    Article  Google Scholar 

  • Reby, D., & McComb, K. (2003). Anatomical constraints generate honesty: Acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour, 65, 519–530.

    Article  Google Scholar 

  • Reby, D., McComb, K., Cargnelutti, B., Darwin, C., Fitch, W. T., & Clutton-Brock, T. H. (2005). Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proceedings of the Royal Society of London B: Biological Sciences, 272, 941–947.

    Article  Google Scholar 

  • Rendall, D., Owren, M. J., & Rodman, P. S. (1998). The role of vocal tract filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations. Journal of the Acoustical Society of America, 103, 602–614.

    Article  CAS  PubMed  Google Scholar 

  • Rendall, D., Owren, M. J., Weerts, E., & Hienz, R. D. (2004). Sex differences in the acoustic structure of vowel-like grunt vocalizations in baboons and their perceptual discrimination in baboons listeners. Journal of the Acoustical Society of America, 115, 411–421.

    Article  PubMed  Google Scholar 

  • Rendall, D., Seyfarth, R., Cheney, D., & Owren, M. (1999). The meaning and function of grunt variants in baboons. Animal Behaviour, 57, 583–592.

    Article  PubMed  Google Scholar 

  • Rendall, D., Vokey, J., & Nemeth, C. (2007). Lifting the curtain on the Wizard of Oz: biased voice-based impressions of speaker size. Journal of Experimental Psychology. Human Perception and Performance, 33, 1208–1219.

    Article  PubMed  Google Scholar 

  • Riede, T., Arcadi, A. C., & Owren, M. J. (2007). Nonlinear acoustics in the pant hoots of common chimpanzees (Pan troglodytes): Vocalizing at the edge. Journal of the Acoustical Society of America, 121, 1758–1767.

    Article  PubMed  Google Scholar 

  • Riede, T., Beckers, G. J. L., Blevins, W., & Suthers, R. A. (2004a). Inflation of the esophagus and vocal tract filtering in ring doves. Journal of Experimental Biology, 207, 4025–4036.

    Article  PubMed  Google Scholar 

  • Riede, T., Bronson, E., Hatzikirou, H., & Zuberbühler, K. (2005a). Vocal production mechanisms in a non-human primate: Morphological data and a model. Journal of Human Evolution, 48, 85–96.

    Article  PubMed  Google Scholar 

  • Riede, T., & Fitch, W. T. (1999). Vocal tract length and acoustics of vocalization in the domestic dog Canis familiaris. Journal of Experimental Biology, 202, 2859–2867.

    CAS  PubMed  Google Scholar 

  • Riede, T., Mitchell, B. R., Tokuda, I., & Owren, M. J. (2005b). Characterizing noise in non-human vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs. Journal of the Acoustical Society of America, 118, 514–522.

    Article  PubMed  Google Scholar 

  • Riede, T., Owren, M. J., & Arcadi, A. C. (2004b). Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): Frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, 64, 277–291.

    Article  PubMed  Google Scholar 

  • Riede, T., Suthers, R. A., Fletcher, N. H., & Blevins, W. E. (2006). Songbirds tune their vocal tract to the fundamental frequency of their song. Proceedings of the National Academy of Sciences of the USA, 103, 5543–5548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riede, T., & Zuberbühler, K. (2003a). Pulse register phonation in Diana monkey alarm calls. Journal of the Acoustical Society of America, 113, 2919–2926.

    Article  PubMed  Google Scholar 

  • Riede, T., & Zuberbühler, K. (2003b). The relationship between acoustic structure and semantic information in Diana monkey alarm vocalization. Journal of the Acoustical Society of America, 114, 1132–1142.

    Article  PubMed  Google Scholar 

  • Ryalls, J. H., & Lieberman, P. (1982). Fundamental-frequency and vowel perception. Journal of the Acoustical Society of America, 72, 1631–1634.

    Article  CAS  PubMed  Google Scholar 

  • Sanvito, S., & Galimberti, F. (2003). Source level of male vocalizations in the genus Mirounga: Repeatability and correlates. Bioacoustics, 14, 47–59.

    Article  Google Scholar 

  • Sanvito, S., Galimberti, F., & Miller, E. H. (2007). Vocal signaling in male southern elephant seals is honest but imprecise. Animal Behaviour, 73, 287–299.

    Article  Google Scholar 

  • Scherer, K. R. (1986). Vocal affect expression: A review and a model for future research. Psychological Bulletin, 99, 143–165.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen, K. (1975). Scaling in biology: The consequences of size. Journal of Experimental Zoology, 194, 287–307.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, B., Cohen, E., Stani, J., Kolbus, A., Rudas, M., Horvat, R., et al. (2007). Towards the expression of sex hormone receptors in the human vocal fold. Journal of Voice, 21, 502–507.

    Article  PubMed  Google Scholar 

  • Schön-Ybarra, M. (1995). A comparative approach to the non-human primate vocal tract: Implications for sound production. In E. Zimmermann & J. D. Newman (Eds.), Current topics in primate vocal communication (pp. 185–198). New York: Plenum Press.

    Chapter  Google Scholar 

  • Sébe, F., Duboscq, J., Ligout, S., Aubin, T., & Poindron, P. (2010). Early vocal recognition of mother by lambs: Contribution of low- and high-frequency vocalizations. Animal Behaviour, 79, 1055–1066.

    Article  Google Scholar 

  • Seyfarth, R. M., & Cheney, L. D. (1986). Vocal development in vervet monkeys. Animal Behaviour, 34, 1640–1658.

    Article  Google Scholar 

  • Simmons, L. W., Peters, M., & Rhodes, G. (2011). Low pitched voices are perceived as masculine and attractive but do they predict semen quality in men? PLoS One, 6(12), e29271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, D. R. R., Patterson, R. D., & Turner, R. (2005). The processing and perception of size information in speech sounds. Journal of the Acoustical Society of America, 117, 305–318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoeger, A. S., Heilmann, G., Zeppelzauer, M., Ganswindt, A., Hensman, S., & Charlton, B. D. (2012). Visualizing sound emission of elephant vocalizations: Evidence for two rumble production types. PLoS One, 7(11), e48907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg, J. (1975). Formant technique in a professional female singer. Acoustica, 32, 89–96.

    Google Scholar 

  • Taylor, A. M., & Reby, D. (2010). The contribution of source-filter theory to mammal vocal communication research. Journal of Zoology, 280, 221–236.

    Article  Google Scholar 

  • Taylor, A. M., Reby, D., & McComb, K. (2008). Human listeners attend to size information in domestic dog growls. Journal of the Acoustical Society of America, 123, 2903–2909.

    Article  PubMed  Google Scholar 

  • Taylor, A. M., Reby, D., & McComb, K. (2009). Context-related variation in the vocal growling behavior of domestic dogs, Canis familiaris. Ethology, 115, 905–915.

    Article  Google Scholar 

  • Taylor, A. M., Reby, D., & McComb, K. (2010). Size communication in domestic dog (Canis familiaris) growls. Animal Behaviour, 79, 205–210.

    Article  Google Scholar 

  • Taylor, A. M., Reby, D., & McComb, K. (2011). Cross modal perception of body size in domestic dogs (Canis familiaris). PLoS One, 6(2), e17069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titze, I. R. (1994). Principles of voice production. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Titze, I. R. (2008). Nonlinear source-filter coupling in phonation: Theory. The Journal of the Acoustical Society of America, 123, 2733–2749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titze, I., Fitch, W., Hunter, E., Alipour, F., Montequin, D., Armstrong, D., et al. (2010). Vocal power and pressure-flow relationships in excised tiger larynges. Journal of Experimental Biology, 213, 3866–3873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokuda, I., Riede, T., Neubauer, J., Owren, M., & Herzel, H. (2002). Nonlinear analysis of irregular animal vocalizations. Journal of the Acoustical Society of America, 111, 2908–2919.

    Article  PubMed  Google Scholar 

  • Townsend, S. W., Charlton, B. D., & Manser, M. B. (2014). Acoustic cues to identity and predator context in meerkat barks. Animal Behaviour, 94, 143–149.

    Article  Google Scholar 

  • Townsend, S. W., & Manser, M. B. (2011). The function of nonlinear phenomena in meerkat alarm calls. Biology Letters, 7, 47–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vannoni, E., & McElligott, A. G. (2007). Individual acoustic variation in fallow deer (Dama dama) common and harsh groans: A source-filter theory perspective. Ethology, 113, 223–234.

    Article  Google Scholar 

  • Vannoni, E., & McElligott, A. G. (2008). Low frequency groans indicate larger and more dominant fallow deer (Dama dama) males. PLoS One, 3, e3113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vannoni, E., Torriani, M., & McElligott, A. G. (2005). Acoustic signalling in cervids: A methodological approach for measuring vocal communication in fallow deer. Cognition, Brain and Behaviour, IX, 551–565.

    Google Scholar 

  • Volodin I. A., Volodina E. V., & Efremova K. O. (2009). Antelope, calling through the nose: structure of sounds and effect of sexual selection on the vocal behavior of the saiga (Saiga tatarica). Zoologicheskii Zhurnal, 88, 113–124.

    Google Scholar 

  • Weissengruber, G. E., Forstenpointner, G., Peters, G., Kübber-Heiss, A., & Fitch, W. T. (2002). Hyoid apparatus and pharynx in the lion (Panthera leo), jaguar (Panthera onca), tiger (Panthera tigris), cheetah (Acinonyx jubatus) and domestic cat (Felis silvestris f. catus). Journal of Anatomy, 201, 195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilden, I., Herzel, H., Peters, G., & Tembrock, G. (1998). Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, 9, 171–196.

    Article  Google Scholar 

  • Wilson, E. O. (1972). Animal communication. Scientific American, 227, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Wolff, S. E., & Puts, D. A. (2010). Vocal masculinity is a robust dominance signal in men. Behavioral Ecology and Sociobiology, 64, 1673–1683.

    Article  Google Scholar 

  • Woods, R. H. (1893). Law of transverse vibrations of strings applied to the human larynx. Transactions of the Royal Academy of Medicine in Ireland, 11, 482–488.

    Article  Google Scholar 

  • Wyman, M. T., Mooring, M. S., McCowan, B., Penedo, M. C. T., & Hart, L. A. (2008). Amplitude of bison bellows reflects male quality, physical condition and motivation. Animal Behaviour, 76, 1625–1639.

    Article  Google Scholar 

  • Yin, S. (2002). A new perspective on barking in dogs (Canis familiaris). Journal of Comparative Psychology, 116, 189–193.

    Article  PubMed  Google Scholar 

  • Yin, S., & McCowan, B. (2004). Barking in domestic dogs: Context specificity and individual identification. Animal Behaviour, 68, 343–355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Reby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, A.M., Charlton, B.D., Reby, D. (2016). Vocal Production by Terrestrial Mammals: Source, Filter, and Function. In: Suthers, R., Fitch, W., Fay, R., Popper, A. (eds) Vertebrate Sound Production and Acoustic Communication. Springer Handbook of Auditory Research, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-27721-9_8

Download citation

Publish with us

Policies and ethics