Skip to main content

Biophysics of Vocal Production in Mammals

  • Chapter
  • First Online:
Vertebrate Sound Production and Acoustic Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 53))

Abstract

Most mammals, including humans, produce sound in agreement with the myoelastic-aerodynamic theory (MEAD): by converting aerodynamic energy into acoustic energy via flow-induced self-sustaining oscillation of the vocal folds or other laryngeal tissue. The generated laryngeal sound is filtered by the vocal tract and radiated from the mouth and/or the nose.

In this chapter, some basic biophysical principles of the MEAD theory are explained, mostly based on research done in humans. Empirical evidence and concepts for nonhuman mammals are provided when available and applicable.

In particular, biomechanical properties of vibrating laryngeal tissue and respective vibratory modes are described, and the oscillatory components and forces necessary for flow-induced self-sustaining vibration are discussed. The notions of fundamental frequency and its control, periodicity, and irregularity are explored, followed by a basic description of nonlinear phenomena (NLP) such as bifurcations, subharmonics, or chaos. Subglottal pressure and glottal airflow are essential parameters of voice production, and their influence on the generated voice source spectrum is considered. Finally, linear and nonlinear effects of the vocal tract are reviewed, and the efficiency sound production is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms vocal tract “resonance” and “format” are often used interchangeably, which may in some cases constitute a precarious simplification. Please refer to the discussion in Titze et al. (2015) for precise definitions and a historical perspective.

References

  • Alipour, F., Brücker, C., Cook, D. D., Gömmel, A., Kaltenbacher, M., Mattheus, W., Mongeau, L., Naumann, E., Schwarze, R., Tokuda, I., & Zörner, S. (2011). Mathematical models and numerical schemes for the simulation of human phonation. Current Bioinformatics, 6, 323–343.

    Article  CAS  Google Scholar 

  • Alipour, F., & Jaiswal, S. (2009). Glottal airflow resistance in excised pig, sheep, and cow larynges. Journal of Voice, 23(1), 40–50.

    Article  PubMed  Google Scholar 

  • Alipour, F., Scherer, R. C., & Finnegan, E. (1997). Pressure-flow relationships during phonation as a function of adduction. Journal of Voice, 11(2), 187–194.

    Article  CAS  PubMed  Google Scholar 

  • Alipour, F., & Titze, I. (1985). Viscoelastic modeling of canine vocalis muscle in relaxation. Journal of Acoustical Society of America, 78(6), 1939–1943.

    Article  Google Scholar 

  • Alipour, F., & Titze, I. (1991). Elastic models of vocal fold tissues. Journal of the Acoustical Society of America, 90(3), 1326–1331.

    Article  Google Scholar 

  • Alku, P., Vintturi, J., & Vilkman, E. (1999). On the linearity of the relationship between the sound pressure level and the negative peak amplitude of the differentiated glottal flow in vowel production. Speech Communication, 28, 269–281.

    Article  Google Scholar 

  • ANSI. (1960). USA Standard acoustical terminology (including mechanical shock and vibration). Technical Report, S1.11960 (R1976).

    Google Scholar 

  • Arai, T. (2001). The replication of Chiba and Kajiyama’s mechanical models of the human vocal cavity. Journal of the Phonetic Society of Japan, 5(2), 31–38.

    Google Scholar 

  • Arnold, G. E., & Pinto, S. (1960). Ventricular dysphonia: New interpretation of an old observation. Laryngoscope, 70, 1608–1627.

    Article  CAS  PubMed  Google Scholar 

  • Attenborough, K. (2007). Springer handbook of acoustics. New York: Springer.

    Google Scholar 

  • Au, W. W. L., & Suthers, R. A. (2014). Production of biosonar signals: Structure and form. In A. Surlykke, P. E. Nachtigall, R. R. Fay, & A. N. Popper (Eds.), Biosonar (pp. 61–105). New York: Springer.

    Google Scholar 

  • Baer, T. (1981). Observation of vocal fold vibration: Measurements of excised larynges. In K. Stevens & M. Hirano (Eds.), Vocal fold physiology (pp. 119–133). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Baer, T., Gay, T., & Niimi, S. (1976). Control of fundamental frequency, intensity, and register of phonation (pp. 175–185). New Haven, CT: Haskins Laboratories, Status Report on Speech Research.

    Google Scholar 

  • Bailly, L., Henrich, N., & Pelorson, X. (2010). Vocal fold and ventricular fold vibration in period-doubling phonation: Physiological description and aerodynamic modeling. Journal of Acoustical Society of America, 127(5), 3212–3222.

    Article  Google Scholar 

  • Baken, R. J. (1990). Irregularity of vocal period and amplitude: A first approach to the fractal analysis of voice. Journal of Voice, 4(3), 185–197.

    Article  Google Scholar 

  • Baken, R. J. (1992). Electroglottography. Journal of Voice, 6(2), 98–110.

    Article  Google Scholar 

  • Baken, R. J., & Orlikoff, R. F. (2000). Clinical measurement of speech and voice (2nd ed.). San Diego, CA: Singular Publishing, Thompson Learning.

    Google Scholar 

  • Barney, A., Shadle, C. H., & Davies, P. O. A. L. (1999). Fluid flow in a dynamic mechanical model of the vocal folds and tract. I. Measurements and theory. Journal of the Acoustical Society of America, 105(1), 444–455.

    Article  Google Scholar 

  • Behrman, A., & Baken, R. (1997). Correlation dimension of electroglottographic data from healthy and pathologic subjects. Journal of Acoustical Society of America, 102(4), 2371–2379.

    Article  CAS  Google Scholar 

  • Beil, R. G. (1962). Frequency analysis of vowels produced in a helium-rich atmosphere. Journal of Acoustical Society of America, 34, 347–349.

    Article  Google Scholar 

  • Beranek, L. L. (1996). Acoustics. Melville, NY: American Institute of Physics for the Acoustical Society of America.

    Google Scholar 

  • Bergé, P., Pomeau, Y., & Vidal, C. (1984). Order within chaos: Towards a deterministic approach to turbulence. Paris: Hermann and Wiley.

    Google Scholar 

  • Berke, G. S., & Gerratt, B. R. (1993). Laryngeal biomechanics: An overview of mucosal wave mechanics. Journal of Voice, 7(2), 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Berke, G., Moore, D., Hanson, D., Hantke, D., Gerratt, B., & Burstein, F. (1987). Laryngeal modeling: Theoretical, in vitro, in vivo. Laryngoscope, 97, 871–881.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. A., Herzel, H., Titze, I. R., & Krischer, K. (1994). Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. Journal of Acoustical Society of America, 95(6), 3595–3604.

    Article  CAS  Google Scholar 

  • Bouhuys, A., Mead, J., Proctor, D. F., & Stevens, K. N. (1968). Pressure-flow events during singing. Annals of the New York Academy of Sciences, 155, 165–176.

    Article  Google Scholar 

  • Brown, C. H., & Cannito, M. P. (1995). Modes of vocal variation in Syke’s monkey (Cercopithecus albogularis) squeals. Journal of Comparative Psychology, 109(4), 398–415.

    Article  CAS  PubMed  Google Scholar 

  • Carterette, E. C., Shipley, C., & Buchwald, J. S. (1979). Linear prediction theory of vocalization in cat and kitten. In B. Lindblom & S. Ohman (Eds.), Frontiers in speech communication research (pp. 245–255). London: Academic Press.

    Google Scholar 

  • Charlton, B. D., Frey, R., McKinnon, A. J., Fritsch, G., Fitch, W. T., & Reby, D. (2013). Koalas use a novel vocal organ to produce unusually low-pitched mating calls. Current Biology, 23(23), R1035–R1036.

    Article  CAS  PubMed  Google Scholar 

  • Chhetri, D. K., Neubauer, J., & Berry, D. A. (2012). Neuromuscular control of fundamental frequency and glottal posture at phonation onset. Journal of Acoustical Society of America, 131(2), 1401–1412.

    Article  Google Scholar 

  • Chiba, T., & Kajiyama, M. (1941). The vowel: Its nature and structure. Tokyo: Tokyo-Kaiseikan.

    Google Scholar 

  • Childers, D. G., Hicks, D. M., Moore, G. P., & Alsaka, Y. A. (1986). A model for vocal fold vibratory motion, contact area, and the electroglottogram. Journal of the Acoustical Society of America, 80(5), 1309–1320.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, D. (1986). Research in laryngeal physiology with excised larynges. In C. W. Cummings, J. M. Fredrickson, L. A. Harker, D. E. Schuller, & C. J. Krause (Eds.), Otolaryngology—Head and neck surgery (Vol. 2, pp. 1728–1737). St. Louis, MO: C. V. Mosby.

    Google Scholar 

  • de Boer, B. (2012). Air sacs and vocal fold vibration: Implications for evolution of speech. Theoria et Historia Scientiarum, 9, 13–28.

    Article  Google Scholar 

  • Dejonckere, P., Bradley, P., Clemente, P., Cornut, G., Crevier-Buchman, L., Friedrich, G., Van De Heyning, P., Remacle, M., & Woisard, V. (2001). A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques Guideline elaborated by the Committee on Phoniatrics of the European Laryngological Society (ELS). European Archives of Otorhinolaryngology, 258, 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Döllinger, M., & Berry, D. (2006). Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation. Journal of Voice, 20(3), 401–413.

    Article  Google Scholar 

  • Döllinger, M., Tayama, N., & Berry, D. A. (2005). Empirical eigenfunctions and medial surface dynamics of a human vocal fold. Methods of Information in Medicine, 44(3), 384–391.

    PubMed  Google Scholar 

  • Eckmann, J., Kamphorst, S. O., Ruelle, D., & Ciliberto, S. (1986). Liapunov exponents from time series. Physical Review A, 34(6), 4971–4979.

    Article  Google Scholar 

  • Eklund, R. (2008). Pulmonic ingressive phonation: Diachronic and synchronic characteristics, distribution and function in animal and human sound production and in human speech. Journal of the International Phonetic Association, 38, 235–324.

    Article  Google Scholar 

  • Fant, G. (1960). Acoustic theory of speech production. The Hague, The Netherlands: Mouton.

    Google Scholar 

  • Fant, G. (1979). Glottal source and waveform analysis. Speech, Music and Hearing Quarterly Progress and Status Report, 1(1979), 85–107.

    Google Scholar 

  • Finnegan, E. M., & Alipour, F. (2009). Phonatory effects of supraglottic structures in excised canine larynges. Journal of Voice, 23(1), 51–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitch, W. T. (1997). Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Journal of the Acoustical Society of America, 102(2), 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. T. (2000a). The evolution of speech: A comparative review. Trends in Cognitive Sciences, 4(7), 258–267.

    Article  PubMed  Google Scholar 

  • Fitch, W. T. (2000b). The phonetic potential of nonhuman vocal tracts: Comparative cineradiographic observations of vocalizing animals. Phonetica, 57(2–4), 205–218.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. T., & Hauser, M. D. (1995). Vocal production in nunhuman primates: Acoustics, physiology, and functional constraints on “honest” advertisement. American Journal of Primatology, 37, 191–219.

    Article  Google Scholar 

  • Fitch, W. T., & Hauser, M. D. (2002). Unpacking “honesty”: Vertebrate vocal production and the evolution of acoustic signals. In A. M. Simmons, A. N. Popper, & R. R. Fay (Eds.), Acoustic communication (pp. 65–137). New York: Springer.

    Google Scholar 

  • Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63, 407–418.

    Article  Google Scholar 

  • Flanagan, J. (1968). Source-system interaction in the vocal tract. Annals of the New York Academy of Sciences, 155(1), 9–17.

    Article  Google Scholar 

  • Flanagan, J., & Landgraf, L. L. (1968). Self oscillating source for vocal tract synthesizers. IEEE Transactions on Audio and Electroacoustics, AU-16(1), 57–64.

    Article  Google Scholar 

  • Frey, R., Gebler, A., Fritsch, G., Nygren, K., & Weissengruber, G. E. (2007). Nordic rattle: The hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus). Journal of Anatomy, 210(2), 131–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey, R., & Riede, T. (2013). The anatomy of vocal divergence in North American elk and European red deer. Journal of Morphology, 274(3), 307–319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedrich, G., & Dejonckere, P. H. (2005). Das Stimmdiagnostik—Protokoll der European Laryngological Society (ELS)—erste Erfahrungen im Rahmen einer Multizenterstudie. Laryngo- Rhino- Otologie, 84(10), 744–752.

    Article  CAS  PubMed  Google Scholar 

  • Gautier, J.-P. (1971). Étude morphologique et fonctionelle des annexes extra-laryngées des Cercopithecinae: Liaison avec les cris d’espacement. Biologia Gabonica, 7, 230–267.

    Google Scholar 

  • Glass, L., & Mackey, M. C. (1988). From clocks to chaos. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Gleick, J. (1987). Chaos: The amazing science of the unpredictable. London: Vintage.

    Google Scholar 

  • Gramming, P., Sundberg, J., Ternstrom, S., Leanderson, R., & Perkins, W. (1988). Relationship between changes in voice pitch and loudness. Journal of Voice, 2(2), 118–126.

    Article  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9, 189–208.

    Article  Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1988). The acoustics of the vocal tract in the horseshoe bat, Rhinolophus hildebrandti. Journal of the Acoustical Society of America, 84, 1201–1213.

    Article  Google Scholar 

  • Häusler, U. (2000). Vocalization-correlated respiratory movements in the squirrel monkey. Journal of Acoustical Society of America, 108(4), 1443–1450.

    Article  Google Scholar 

  • Herbst, C. T. (2014). Glottal efficiency of periodic and irregular in vitro red deer voice production. Acta Acoustica united with Acoustica, 100(4), 724–733.

    Article  Google Scholar 

  • Herbst, C. T., Herzel, H., Svec, J. G., Wyman, M. T., & Fitch, W. T. (2013a). Visualization of system dynamics using phasegrams. Journal of the Royal Society Interface, 10(85), 1–14.

    Article  Google Scholar 

  • Herbst, C. T., Hess, M., Müller, F., Svec, J. G., & Sundberg, J. (2015). Glottal adduction and subglottal pressure in singing. Journal of Voice, 29(4), 391–402.

    Article  PubMed  Google Scholar 

  • Herbst, C. T., Howard, D. M., & Svec, J. G. (2015). The sound source in singing—basic principles and muscular adjustments for fine-tuning vocal timbre. In G. Welch, D. M. Howard, & J. Nix (Eds.), The Oxford handbook of singing. Oxford: Oxford University Press. Online Publication Date: Dec 2015. DOI: 10.1093/oxfordhb/9780199660773.013.011

    Google Scholar 

  • Herbst, C. T., Qiu, Q., Schutte, H. K., & Švec, J. G. (2011). Membranous and cartilaginous vocal fold adduction in singing. Journal of Acoustical Society of America, 129(4), 2253–2262.

    Article  Google Scholar 

  • Herbst, C. T., Stoeger, A. S., Frey, R., Lohscheller, J., Titze, I. R., Gumpenberger, M., & Fitch, W. T. (2012). How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science, 337(6094), 595–599.

    Article  CAS  PubMed  Google Scholar 

  • Herbst, C. T., & Svec, J. G. (2016). Basics of voice acoustics—A tutorial. In R. Sataloff (Ed.), Sataloff’s comprehensive textbook of otolaryngology: Head and neck surgery: Laryngology (Vol. 4, pp. 63–80). Philadelphia: Jaypee.

    Chapter  Google Scholar 

  • Herbst, C. T., Svec, J. G., Lohscheller, J., Frey, R., Gumpenberger, M., Stoeger, A. S., & Fitch, W. T. (2013b). Complex vibratory patterns in an elephant larynx. Journal of Experimental Biology, 216, 4054–4064.

    Article  PubMed  Google Scholar 

  • Herbst, C. T., Ternström, S., & Švec, J. G. (2009). Investigation of four distinct glottal configurations in classical singing—A pilot study. Journal of Acoustical Society of America, 125(3), EL104–EL109.

    Article  Google Scholar 

  • Herzel, H. (1993). Bifurcations and chaos in voice signals. Applied Mechanics Review, 46(7), 399–413.

    Article  Google Scholar 

  • Herzel, H., Holzfuss, J., Kowalik, Z., Pompe, B., & Reuter, R. (1998). Detecting bifurcations in voice signals. In H. Kantz, J. Kurths, & G. Mayer-Kress (Eds.), Nonlinear analysis of physiological data (pp. 325–344). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Hewitt, G., MacLarnon, A., & Jones, K. E. (2002). The functions of laryngeal air sacs in primates: A new hypothesis. Folia Primatologica (Basel), 73(2–3), 70–94.

    Article  Google Scholar 

  • Hilloowala, R. A., & Lass, N. J. (1978). Spectrographic analysis of laryngeal air sac resonance in rhesus monkey. American Journal of Physical Anthropology, 49(1), 129–131.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, M. (1974). Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica, 1974(26), 89–94.

    Article  Google Scholar 

  • Hirano, M. (1981). Clinical examination of voice. New York: Springer.

    Google Scholar 

  • Hirano, M., Hibi, S., & Hagino, S. (1995). Physiological aspects of vibrato. In P. H. Dejonckere, M. Hirano, & J. Sundberg (Eds.), Vibrato (pp. 9–33). San Diego, CA: Singular Publishing Group.

    Google Scholar 

  • Hirano, M., Kurita, S., & Nakashima, T. (1983). Growth, development, and aging of human vocal folds. In D. Bless (Ed.), Vocal fold physiology: Contemporary research and clinical issues (pp. 22–43). San Diego, CA: College Hill Press.

    Google Scholar 

  • Hixon, T. (1987). Respiratory function in speech and song. Boston: College-Hill.

    Google Scholar 

  • Hollien, H., Shearer, W., & Hicks, J. W., Jr. (1977). Voice fundamental frequency levels of divers in helium-oxygen speaking environments. Undersea Biomedical Research, 4(2), 199–207.

    CAS  PubMed  Google Scholar 

  • Holmberg, E. B., Hillman, R. E., & Perkell, J. S. (1988). Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice. Journal of the Acoustical Society of America, 84, 511–529.

    Article  CAS  PubMed  Google Scholar 

  • Howard, D. M., & Angus, J. A. S. (2009). Acoustics and psychoacoustics (4th ed.). Oxford, England: Oxford University Press.

    Google Scholar 

  • Husson, R. (1950). Ètude des phénomènes physiologiques et acoustiques fondamentaux de la voix chantée. Thesis, Université de Paris, Faculté des Sciences.

    Google Scholar 

  • Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. The Bell System Technical Journal, 51(6), 1233–1268.

    Article  Google Scholar 

  • Jiang, J., O’Mara, T., Conley, D., & Hanson, D. (1999). Phonation threshold pressure measurements during phonation by airflow interruption. Laryngoscope, 109(3), 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Zhang, Y., & McGilligan, C. (2006). Chaos in voice, from modeling to measurement. Journal of Voice, 20(1), 2–17.

    Article  PubMed  Google Scholar 

  • Johnson, A. M., Ciucci, M. R., Russell, J. A., Hammer, M. J., & Connor, N. P. (2010). Ultrasonic output from the excised rat larynx. Journal of Acoustical Society of America, 128(2), EL75–EL79.

    Article  Google Scholar 

  • Kelleher, J. E., Siegmund, T., Du, M., Naseri, E., & Chan, R. W. (2013). Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomechanics and Modeling in Mechanobiology, 12(3), 555–567.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khosla, S., Muruguppan, S., Gutmark, E., & Scherer, R. (2007). Vortical flow field during phonation in an excised canine larynx model. The Annals of Otology, Rhinology, and Laryngology, 116(3), 217–228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klatt, D., & Klatt, L. (1990). Analysis, synthesis, and perception of voice quality variations among female and male talkers. Journal of the Acoustical Society of America, 87(2), 820–857.

    Article  CAS  PubMed  Google Scholar 

  • Koda, H., Nishimura, T., Tokuda, I. T., Oyakawa, C., Nihonmatsu, T., & Masataka, N. (2012). Soprano singing in gibbons. American Journal of Physical Anthropology, 149(3), 347–355.

    Article  PubMed  Google Scholar 

  • Kurita, S., Nagata, K., & Hirano, M. (1983). A comparative study of the layer structure of the vocal fold. In D. M. Bless & J. H. Abbs (Eds.), Vocal fold physiology: Contemporary research and clinical issues (pp. 3–21). San Diego: College Hill.

    Google Scholar 

  • Ladefoged, P., & McKinney, N. (1963). Loudness, sound pressure, and subglottal pressure in speech. Journal of the Acoustical Society of America, 35(4), 454–460.

    Article  Google Scholar 

  • Lauterborn, W., & Cramer, E. (1981). Subharmonic routes to chaos observed in acoustics. Physical Review Letters, 47, 1445–1448.

    Article  Google Scholar 

  • Lauterborn, W., & Parlitz, U. (1988). Methods of chaos physics and their application to acoustics. Journal of Acoustical Society of America, 84(6), 1975–1993.

    Article  Google Scholar 

  • Lindestad, P. A., Sodersten, M., Merker, B., & Granqvist, S. (2001). Voice source characteristics in Mongolian “throat singing” studied with high-speed imaging technique, acoustic spectra, and inverse filtering. Journal of Voice, 15(1), 78–85.

    Article  CAS  PubMed  Google Scholar 

  • Lucero, J. C., Lourenco, K., Hermant, N., Van Hirtum, A., & Pelorson, X. (2012). Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds. Journal of Acoustical Society of America, 132(1), 403–411.

    Article  Google Scholar 

  • Madsen, P. T., Jensen, F. H., Carder, D., & Ridgway, S. (2012). Dolphin whistles: A functional misnomer revealed by heliox breathing. Biology Letters, 8(2), 211–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGlashan, J., Sadolin, C., & Kjelin, H. (2007). Can vocal effects such as distortion, growling, rattle and grunting be produced without traumatising the vocal folds? Paper presented at the 7th Pan-European Voice Conference (PEVOC), Groningen, The Netherlands.

    Google Scholar 

  • Mende, W., & Herzel, H. (1990). Bifurcation and chaos in newborn infant cries. Physics Letters A, 145(8–9), 418–424.

    Article  Google Scholar 

  • Mergell, P., Herzel, H., & Titze, I. R. (2000). Irregular vocal-fold vibration—High-speed observation and modeling. Journal of the Acoustical Society of America, 108(6), 2996–3002.

    Article  CAS  PubMed  Google Scholar 

  • Miller, D. G. (2008). Resonance in singing. Princeton, NJ: Inside View Press.

    Google Scholar 

  • Miller, D. G., & Schutte, H. K. (1984). Characteristic patterns of sub- and supraglottal pressure variations within the glottal cycle. In Transcripts of the XIIIth symposium: Care of the professional voice. New York: The Voice Foundation.

    Google Scholar 

  • Moore, P. (1991). Voice: A historical perspective. A short history of laryngeal investigation. Journal of Voice, 5(3), 166–281.

    Article  Google Scholar 

  • Negus, V. E. (1932). The mechanism of the larynx (pp. 220–227). London: Cassel.

    Google Scholar 

  • Novick, A., & Griffin, D. R. (1961). Laryngeal mechanisms in bats for the production of orientation sounds. Journal of Experimental Zoology, 148, 125–145.

    Article  CAS  PubMed  Google Scholar 

  • Oren, L., Khosla, S., & Gutmark, E. (2014). Intraglottal pressure distribution computed from empirical velocity data in canine larynx. Journal of Biomechanics, 47(6), 1287–1293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45(9), 712–716.

    Article  Google Scholar 

  • Powell, A. (1995). Lord Rayleigh’s foundations of aeroacoustics. Journal of Acoustical Society of America, 98(4), 1839–1844.

    Article  Google Scholar 

  • Pye, J. D. (1967). Synthesizing the waveforms of bats’ pulses. In R.-G. Busnel & J. F. Fish (Eds.), Animal sonar systems: Biology and bionics (pp. 43–67). Jouy-en-Josas, France: Laboratoire de Physiologie Acoustique, INRA-CNRS.

    Google Scholar 

  • Reby, D., & McComb, K. (2003). Anatomical constraints generate honesty: Acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour, 65, 519–530.

    Article  Google Scholar 

  • Remmers, J. E., & Gautier, H. (1972). Neural and mechanical mechanisms of feline purring. Respiration Physiology, 16, 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Riede, T. (2010). Elasticity and stress relaxation of rhesus monkey (Macaca mulatta) vocal folds. Journal of Experimental Biology, 213(Pt 17), 2924–2932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riede, T. (2011). Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization. Journal Neurophysiology, 106(5), 2580–2592.

    Article  PubMed  Google Scholar 

  • Riede, T., Arcadi, A. C., & Owren, M. J. (2007). Nonlinear acoustics in the pant hoots of common chimpanzees (Pan troglodytes): Vocalizing at the edge. Journal of Acoustical Society of America, 121(3), 1758–1767.

    Article  Google Scholar 

  • Riede, T., & Titze, I. R. (2008). Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni)—Producing high fundamental frequency vocalization with a very long vocal fold. Journal of Experimental Biology, 211(Pt 13), 2144–2154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riede, T., Tokuda, I. T., Munger, J. B., & Thomson, S. L. (2008). Mammalian laryngseal air sacs add variability to the vocal tract impedance: Physical and computational modeling. Journal of Acoustical Society of America, 124(1), 634–647.

    Article  Google Scholar 

  • Roark, R. M. (2006). Frequency and voice: Perspectives in the time domain. Journal of Voice, 20(3), 325–354.

    Article  PubMed  Google Scholar 

  • Roberts, L. H. (1975). The rodent ultrasound production mechanism. Ultrasonics, 13(2), 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Rossing, T. (1990). The science of sound. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Rothenberg, M. (1973). A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. Journal of the Acoustical Society of America, 53(6), 1632–1645.

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg, M. (1981a). The voice source in singing. In Research aspects on singing (pp. 15–33). Stockholm: Royal Swedish Academy of Music.

    Google Scholar 

  • Rothenberg, M. (1981b). Acoustic interaction between the glottal source and the vocal tract. In K. N. Stevens & M. Hirano (Eds.), Vocal fold physiology (pp. 305–328). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Roux, J.-C., Simonyi, R. H., & Swinney, H. L. (1983). Observation of a strange attractor. Physica D, 8(1–2), 257–266.

    Article  Google Scholar 

  • Sanders, I., Weisz, D., Yang, B. Y., Fung, K., & Amirali, A. (2001). The mechanism of ultrasonic vocalization in the rat. Paper presented at the Society for Neuroscience Abstracts.

    Google Scholar 

  • Scherer, R. C. (2014). Laryngeal function during phonation. In J. S. Rubin, R. Sataloff, & G. S. Korovin (Eds.), Diagnosis and treatment of voice disorders (4th ed., Vol. 117–144). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Schutte, H. (1980). The efficiency of voice production. Doctoral dissertation, University of Groningen.

    Google Scholar 

  • Schutte, H., & Miller, D. G. (1988). Resonanzspiele der Gesangsstimme in ihren Beziehungen zu supra- und subglottalen Druckverläufen: Konsequenzen für die Stimmbildungstheorie. Folia Phoniatrica, 40, 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Serway, R. A. (1990). Physics for scientists and engineers. Philadelphia: Saunders College.

    Google Scholar 

  • Sissom, D., Rice, D., & Peters, G. (1991). How cats purr. The Zoological Society of London, 223, 67–78.

    Article  Google Scholar 

  • Snelleman, J., Versnel, H., & Dejonckere, P. (2007). Loud phonation: Subglottal pressures and closed quotients. Paper presented at the 7th Pan-European Voice Conference (PEVOC), Groningen, The Netherlands.

    Google Scholar 

  • Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Story, B. (2002). An overview of the physiology, physics and modeling of the sound source for vowels. Acoustical Science and Technology, 23(4), 195–206.

    Article  Google Scholar 

  • Story, B., & Titze, I. R. (1995). Voice simulation with a body cover model of the vocal folds. Journal of the Acoustical Society of America, 97(2), 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  • Strogatz, S. H. (2000). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Cambridge, MA: Westview Press.

    Google Scholar 

  • Sundberg, J. (1981). Research aspects on singing. Stockholm: Royal Swedish Academy of Music.

    Google Scholar 

  • Sundberg, J., Fahlstedt, E., & Morell, A. (2005). Effects on the glottal voice source of vocal loudness variation in untrained female and male voices. Journal of Acoustical Society of America, 117, 879–885.

    Article  Google Scholar 

  • Sundberg, J., Titze, I., & Scherer, R. (1993). Phonatory control in male singing: A study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source. Journal of Voice, 7(1), 15–29.

    Article  CAS  PubMed  Google Scholar 

  • Suthers, R. A., & Fattu, J. M. (1973). Mechanisms of sound production in echolocating bats. American Zoologist, 13, 1215–1226.

    Article  Google Scholar 

  • Suthers, R. A., & Fattu, J. M. (1982). Selective laryngeal neurotomy and control of phonation by the echolocating bat, Eptesicus. Journal of Comparative Physiology, 145, 529–537.

    Article  Google Scholar 

  • Svec, J. G. (2000). On vibration properties of human vocal folds: Voice registers, bifurcations, resonance characteristics, development and application of videokymography. Doctoral dissertation, University of Groningen.

    Google Scholar 

  • Svec, J. G., Horacek, J., Sram, F., & Vesely, J. (2000). Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. Journal of the Acoustical Society of America, 108(4), 1397–1407.

    Article  CAS  PubMed  Google Scholar 

  • Svec, J. G., Schutte, H. K., & Miller, D. G. (1999). On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges. Journal of the Acoustical Society of America, 106(3 Pt 1), 1523–1531.

    Article  CAS  PubMed  Google Scholar 

  • Titze, I. R. (1988a). Regulation of vocal power and efficiency by subglottal pressure and glottal width. In O. Fujimura (Ed.), Vocal fold physiology (pp. 227–238). New York: Raven.

    Google Scholar 

  • Titze, I. R. (1988b). The physics of small-amplitude oscillation of the vocal folds. Journal of Acoustical Society of America, 83(4), 1536–1552.

    Article  CAS  Google Scholar 

  • Titze, I. R. (1989). On the relation between subglottal pressure and fundamental frequency in phonation. Journal of Acoustical Society of America, 85(2), 901–906.

    Article  CAS  Google Scholar 

  • Titze, I. R. (1992). Phonation threshold pressure: A missing link in glottal aerodynamics. Journal of Acoustical Society of America, 91(5), 2926–2935.

    Article  CAS  Google Scholar 

  • Titze, I. R. (1995). Workshop on acoustic voice analysis. Summary statement. Iowa City, IA: National Center for Voice and Speech.

    Google Scholar 

  • Titze, I. R. (2000). Principles of voice production. Iowa City, IA: National Center for Voice and Speech.

    Google Scholar 

  • Titze, I. R. (2004a). A theoretical study of F0–F1 interaction with application to resonant speaking and singing voice. Journal of Voice, 18(3), 292–298.

    Article  PubMed  Google Scholar 

  • Titze, I. R. (2004b). Theory of glottal airflow and source-filter interaction in speaking and singing. Acta Acoustica united with Acoustica, 90, 641–648.

    Google Scholar 

  • Titze, I. R. (2006). The myoelastic aerodynamic theory of phonation. Denver, CO: National Center for Voice and Speech.

    Google Scholar 

  • Titze, I. R. (2008). Nonlinear source-filter coupling in phonation: Theory. Journal of the Acoustical Society of America, 123(5), 2733–2749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titze, I. R. (2009). Phonation threshold pressure measurement with a semi-occluded vocal tract. Journal of Speech, Language, and Hearing Research, 52(4), 1062–1072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titze, I. R. (2011). Vocal fold mass is not a useful quantity for describing F0 in vocalization. Journal of Speech, Language, and Hearing Research, 54, 520–522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titze, I. R., Baken, R. J., Bozeman, K. W., Granqvist, S., Henrich, N., Herbst, C. T., Howard, D. M., Hunter, E. J., Kaelin, D., Kent, R. D., Kreiman, J., Kob, M., Löfqvist, A., McCoy, S., Miller, D. G., Noé, H., Scherer, R. C., Smith, J. R., Story, B. H., Svec, J. G., Ternström, S., & Wolfe, J. (2015). Toward a consensus on symbolic notation of harmonics, resonances, and formants in vocalization. Journal of the Acoustical Society of America, 137(5), 3005–3007.

    Article  PubMed  Google Scholar 

  • Titze, I. R., Baken, R. J., & Herzel, H. (1993). Evidence of chaos in vocal fold vibration. In I. R. Titze (Ed.), Vocal fold physiology: Frontiers in basic science (pp. 143–188). San Diego, CA: Singular Publishing Group.

    Google Scholar 

  • Titze, I. R., Fitch, W. T., Hunter, E. J., Alipour, F., Montequin, D., Armstrong, D. L., McGee, J. A., & Walsh, E. J. (2010). Vocal power and pressure-flow relationships in excised tiger larynges. Journal of Experimental Biology, 213(22), 3866–3873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titze, I. R., & Hunter, E. J. (2004). Normal vibration frequencies of the vocal ligament. Journal of Acoustical Society of America, 115(5 Pt 1), 2264–2269.

    Article  Google Scholar 

  • Titze, I. R., & Riede, T. (2010). A cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies. PLoS Computational Biology, 6(8).

    Google Scholar 

  • Titze, I. R., & Sundberg, J. (1992). Vocal intensity in speakers and singers. Journal of the Acoustical Society of America, 91(5), 2936–2946.

    Article  CAS  PubMed  Google Scholar 

  • Tokuda, I., Horáček, J., Švec, J. G., & Herzel, H. (2007). Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments. Journal of Acoustical Society of America, 122(1), 519–531.

    Article  Google Scholar 

  • Tokuda, I., Riede, T., Neubauer, J., Owren, M. J., & Herzel, H. (2002). Nonlinear analysis of irregular animal vocalizations. Journal of Acoustical Society of America, 111(6), 2908–2919.

    Article  Google Scholar 

  • van den Berg, J. (1956). Direct and indirect determination of the mean subglottic pressure. Folia Phoniatrica, 8, 1–24.

    Article  Google Scholar 

  • van den Berg, J. (1958). Myoelastic-aerodynamic theory of voice production. Journal of Speech and Hearing Research, 3, 227–244.

    Article  Google Scholar 

  • van den Berg, J. (1963). Vocal ligaments versus registers. The NATS Bulletin, 16–31.

    Google Scholar 

  • van den Berg, J., Zantema, J. T., & Doornebal, P., Jr. (1957). On the air resistance and the Bernoulli effect of the human larynx. Journal of the Acoustical Society of America, 29(5), 626–631.

    Article  Google Scholar 

  • Vilkman, E. (1987). An apparatus for studying the role of the cricothyroid articulaion in the voice production of excised human larynges. Folia Phoniatrica, 39, 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Welham, N. V., Montequin, D. W., Tateya, I., Tateya, T., Choi, S. H., & Bless, D. M. (2009). A rat excised larynx model of vocal fold scar. Journal of Speech, Language, and Hearing Research, 52(4), 1008–1020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilden, I., Herzel, H., Peters, G., & Tembrock, G. (1998). Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, 9, 171–196.

    Article  Google Scholar 

  • Zemlin, W. R. (1998). Speech and hearing science: Anatomy and physiology (4th ed.). Boston: Allyn & Bacon.

    Google Scholar 

  • Zhang, Z. (2009). Characteristics of phonation onset in a two-layer vocal fold model. Journal of Acoustical Society of America, 125(2), 1091–1102.

    Article  Google Scholar 

  • Zhang, Y., Jiang, J. J., Tao, C., Bieging, E., & MacCallum, J. K. (2007). Quantifying the complexity of excised larynx vibrations from high-speed imaging using spatiotemporal and nonlinear dynamic analyses. Chaos, 17(4), 043114-1–043114-10.

    Google Scholar 

  • Zhang, K., Siegmund, T., Chan, R. W., & Fu, M. (2009). Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria. Journal of Voice, 23(3), 277–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This publication was partly financed by the European Social Fund and the state budget of the Czech Republic within the project no. CZ.1.07/2.3.00/30.0004 “POST-UP” and partly by the ERC grant SOMACCA. I am very grateful to Aaron Johnson and Jan Svec for their comments and suggestions. I thank Megan Wyman for her aid in acquiring the data for Fig. 6.5 and Nadja Kavcik-Graumann for her help with the artwork of Figs. 6.1 and 6.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian T. Herbst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herbst, C.T. (2016). Biophysics of Vocal Production in Mammals. In: Suthers, R., Fitch, W., Fay, R., Popper, A. (eds) Vertebrate Sound Production and Acoustic Communication. Springer Handbook of Auditory Research, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-27721-9_6

Download citation

Publish with us

Policies and ethics