Skip to main content

An Iterative Mesh Optimization Method for 3D Meristem Reconstruction at Cell Level

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 574))

  • 790 Accesses

Abstract

This paper focuses on the reconstruction of 3-dimensional multi-lay-ered triangular mesh representations of plant cell tissues, based on segmented images obtained from confocal microscopy of shoot apical meristems of model plant Arabidopsis thaliana. Obtaining good-quality meshes of cell interfaces in plant tissues is currently a missing step in the existing image analysis pipelines. We propose a method for optimizing the quality of such a mesh representation of the tissue simultaneously along several different citeria, starting from a low-quality mesh. An iterative process minimizes an energy functional defined over this discrete structure, by deforming its geometry and updating its connectivity at fixed complexity. This optimization results in a light discrete representation of the cell surfaces that enables fast visualization, and quantitative analysis, and gives way to in silico physical and mechanical simulations on real-world data. We also propose a complete quantitative evaluation scheme to measure the quality of the cell tissue reconstruction, that demonstrates the capacity of our method to fit multiple optimization criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amat, F., Lemon, W., Mossing, D.P., McDole, K., Wan, Y., Branson, K., Myers, E.W., Keller, P.J.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11(9), 951–958 (2014)

    Article  Google Scholar 

  2. Amenta, N., Bern, M.W., Eppstein, D.: Optimal point placement for mesh smoothing. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 528–537 (1997)

    Google Scholar 

  3. Barbier de Reuille, P., Bohn-Courseau, I., Godin, C., Traas, J.: A protocol to analyse cellular dynamics during plant development. The Plant J. 44(6), 1045–1053 (2005)

    Article  Google Scholar 

  4. de Reuille, P.B., Robinson, S., Smith, R.S.: Quantifying cell shape and gene expression in the shoot apical meristem using MorphoGraphX. In: Žárský, V., Cvrčková, F. (eds.) Plant Cell Morphogenesis. Methods in Molecular Biology, pp. 121–134. Springer, New York (2014)

    Chapter  Google Scholar 

  5. Chakraborty, A., Perales, M.M., Reddy, G.V., Roy Chowdhury, A.K.: Adaptive geometric tessellation for 3d reconstruction of anisotropically developing cells in multilayer tissues from sparse volumetric microscopy images. PLoS One 8(8), e67202 (2013)

    Article  Google Scholar 

  6. Chakraborty, A., Yadav, R., Reddy, G.V., Roy Chowdhury, A.K.: Cell resolution 3d reconstruction of developing multilayer tissues from sparsely sampled volumetric microscopy images. In: BIBM, pp. 378–383 (2011)

    Google Scholar 

  7. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Clark, B., Ray, N., Jiao, X.: Surface mesh optimization, adaption, and untangling with high-order accuracy. In: Proceedings of the 21st International Meshing Roundtable, IMR 2012, pp. 385–402 (2012)

    Google Scholar 

  9. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 317–324 (1999)

    Google Scholar 

  10. Dufour, A., Thibeaux, R., Labruyere, E., Guillen, N., Olivo-Marin, J.-C.: 3-D active meshes: Fast discrete deformable models for cell tracking in 3-D time-lapse microscopy. IEEE Trans. Image Process. 20(7), 1925–1937 (2011)

    Article  MathSciNet  Google Scholar 

  11. Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J.-L., Malandain, G., Godin, C.: Imaging plant growth in 4D : robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7, 547–553 (2010)

    Article  Google Scholar 

  12. Field, D.A.: Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)

    Article  MATH  Google Scholar 

  13. Field, D.A.: Qualitative measures for initial meshes. Int. J. Numer. Methods Eng. 47(4), 887–906 (2000)

    Article  MATH  Google Scholar 

  14. Freitag, L.A.: On combining laplacian and optimization-based mesh smoothing techniques. In: Trends in Unstructured Mesh Generation, pp. 37–43 (1997)

    Google Scholar 

  15. Guignard, L., Godin, C., Fiuza, U.-M., Hufnagel, L., Lemaire, P., Malandain, G.: Spatio-temporal registration of embryo images. In: IEEE International Symposium on Biomedical Imaging (2014)

    Google Scholar 

  16. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1993, pp. 19–26 (1993)

    Google Scholar 

  17. Jiao, X., Wang, D., Zha, H.: Simple and effective variational optimization of surface and volume triangulations. Eng. Comput. (Lond.) 27(1), 81–94 (2011)

    Article  MATH  Google Scholar 

  18. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  19. Keller, P.J.: Imaging morphogenesis: technological advances and biological insights. Science 340(6137) (2013)

    Google Scholar 

  20. Kwiatkowska, D.: Surface growth at the reproductive shoot apex of Arabidopsis thaliana pin-formed 1 and wild type. J. Exp. Bot. 55(399), 1021–1032 (2004)

    Article  Google Scholar 

  21. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169 (1987)

    Google Scholar 

  22. Michelin, G., Guignard, L., Fiuza, U.-M., Malandain, G., et al.: Embryo cell membranes reconstruction by tensor voting. In: IEEE International Symposium on Biomedical Imaging (2014)

    Google Scholar 

  23. Owen, S.J.: A survey of unstructured mesh generation technology. In: International Meshing Roundtable, pp. 239–267 (1998)

    Google Scholar 

  24. Pradal, C., Boudon, F., Nouguier, C., Chopard, J., Godin, C.: Plantgl: A python-based geometric library for 3D plant modelling at different scales. Graph. Models 71(1), 1–21 (2009)

    Article  Google Scholar 

  25. Rizzi, B., Peyrieras, N.: Towards 3D in silico modeling of the sea urchin embryonic development. J. Chem. Biol. 7(1), 17–28 (2014)

    Article  Google Scholar 

  26. Robin, F.B., Dauga, D., Tassy, O., Sobral, D., Daian, F., Lemaire, P.: Time-lapse imaging of live Phallusia embryos for creating 3D digital replicas. Cold Spring Harb. Protoc. 10, 1244–1246 (2011)

    Google Scholar 

  27. Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of the Symposium on Computational Geometry, SCG 1998, pp. 86–95 (1998)

    Google Scholar 

  28. Tataw, O.M., Reddy, G.V., Keogh, E.J., Roy Chowdhury, A.K.: Quantitative analysis of live-cell growth at the shoot apex of arabidopsis thaliana: algorithms for feature measurement and temporal alignment. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(5), 1150–1161 (2013)

    Article  Google Scholar 

  29. Taubin, G.: Curve and surface smoothing without shrinkage. In: Proceedings of the Fifth International Conference on Computer Vision (ICCV 1995), pp. 852–857 (1995)

    Google Scholar 

  30. Cgal. Cgal, Computational Geometry Algorithms Library (1996). http://www.cgal.org

  31. Vidal, V., Wolf, C., Dupont, F.: Combinatorial mesh optimization. The Vis. Comput. 28(5), 511–525 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Cerutti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cerutti, G., Godin, C. (2015). An Iterative Mesh Optimization Method for 3D Meristem Reconstruction at Cell Level. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics