Skip to main content

Molecular Signaling in Oral Cancer Invasion and Metastasis

  • Chapter
  • First Online:
Targeting Oral Cancer

Abstract

Head and neck cancer is among the ten most common and lethal tumors worldwide. Over 90 % of head and neck cancers are squamous cell carcinomas, which have a 40 % 5-year mortality and 25 % recurrence rate despite rigorous utilization of several therapeutic modalities. Treatment costs exceed $3.1 billion in America alone. Thus, improvement of conventional therapy is urgently needed to reduce mortality and morbidity of head and neck squamous cell carcinoma (HNSCC). HNSCC represents a devastating type of malignancy with a high incidence of local invasion, cervical lymph node metastasis, tumor recurrence, and drug resistance leading to patient disfigurement and death. Understanding the molecular mechanisms associated with aberrant growth, invasion, and metastasis to identify an effective therapeutic target is one of the most demanding goals in head and neck cancer biology. The hepatocyte growth factor/scatter factor (HGF/SF) and MET receptor signaling axis have been studied extensively over the past two decades, revealing their important role in mediating tumor growth, survival, chemoresistance, and invasive growth and metastasis. In this chapter, we will review HGF/SF-MET signaling in malignant HNSCC progression and discuss therapeutic options this signaling pathway may present for the treatment of HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lagha A, Chraiet N, Ayadi M, et al. Systemic therapy in the management of metastatic or advanced salivary gland cancers. Head Neck Oncol. 2012;4(1):19.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Sankaranarayanan R, Masuyer E, Swaminathan R, et al. Head and neck cancer: a global perspective on epidemiology and prognosis. Anticancer Res. 1998;18(6B):4779–86.

    PubMed  Google Scholar 

  3. Jernal A, Bray F, Center M, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  4. Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist. 2010;15(9):994–1001.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cortesina G, Martone T, Galeazzi E. Staging of head and neck squamous cell carcinoma using the MET oncogene product as marker of tumor cells in lymph node metastases. Int J Cancer. 2000;89:286–92.

    Article  PubMed  Google Scholar 

  6. Xu Y, Fisher G. Role of met axis in head and neck cancer. Cancers. 2013;5:1601–18. doi:10.3390/cancers5041601.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Uchida D, Kawamata H, Omotehara F, et al. Role of HGF/C-MET system in invasion and metastasis of oral squamous cell carcinoma cells in vitro and its clinical significance. Int J Cancer. 2001;93:489–96.

    Article  PubMed  Google Scholar 

  8. Rubin GJ, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998;90(11):824–32.

    Article  Google Scholar 

  9. Teman S, Kawaguchi H, El-Naggar AK, et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol. 2007;25(16):2164–70.

    Article  Google Scholar 

  10. Quon H, Liu FF, Cummings BJ. Potential molecular prognostic markers in head and neck squamous cell carcinomas. Head Neck. 2001;23(2):147–59.

    Article  PubMed  Google Scholar 

  11. Sok J, Coppelli F, Thomas S, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12(17):5064–73.

    Article  PubMed  Google Scholar 

  12. Wong SF. Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther. 2005;27(6):684–94.

    Article  PubMed  Google Scholar 

  13. Bonner J, Maihle N, Flven B, et al. The interaction of epidermal growth factor and radiation in human head and neck squamous cell carcinoma cell lines with vastly different radiosensitivities. Int J Radiat Oncol Biol Phys. 1994;29(2):243–7.

    Article  PubMed  Google Scholar 

  14. Bonner J, Harari P, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.

    Article  PubMed  Google Scholar 

  15. Chen Z, Ehsanian R, Waes CV. Nuclear transcription factors and signaling pathways in oral cancer metastasis. In: Meyer J, editor. Oral cancer metastasis. New York: Springer; 2010. p. 197–230.

    Google Scholar 

  16. Trusolino L, Bertotti A, Comoglio M. MET signaling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11:834–48. doi:10.1038/nrm3012.

    Article  PubMed  Google Scholar 

  17. Gherardi E, Birchmeier W, Birchmeier C, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12:89–103. doi:10.1038/nrc3205.

    Article  PubMed  Google Scholar 

  18. Kawaguchi M, Kataoka H. Mechanisms of hepatocyte growth factor activation in cancer tissues. Cancers. 2014;6:1890–904. doi:10.3390/cancers6041890.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chau N, Perez-Ordonez B, Zhang K, et al. The association between EGFR variant III, HPV, p16, c-MET, EGFR gene copy number and response to EGFR inhibitors in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck Oncol. 2011;3:11–21.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.

    Article  PubMed  Google Scholar 

  21. Miyazawa K, Tsubouchi H, Naka D, et al. Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem Biophys Res Commun. 1989;163:967–73.

    Article  PubMed  Google Scholar 

  22. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342(6248):4410–43.

    Article  Google Scholar 

  23. Zarnegar R, Michalopoulos G. Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. Cancer Res. 1989;49(12):3314–20.

    PubMed  Google Scholar 

  24. Nakamura T, Nawa K, Ichihara A, et al. Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett. 1987;224(2):311–6.

    Article  PubMed  Google Scholar 

  25. Stoker M, Gherardi E, Perryman M, et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327:239–42.

    Article  PubMed  Google Scholar 

  26. Gherardi E, Gray J, Stoker M, et al. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci U S A. 1989;86:5844–8.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gherardi E, Sroker M. Hepatocytes and scatter factor. Nature. 1990;356:228.

    Article  Google Scholar 

  28. Weidner KM, Arakaki N, Hartmann G, et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci U S A. 1991;88:7001–5.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sakata H, Takayama H, Sharp R. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ. 1996;7(11):1513–23.

    PubMed  Google Scholar 

  30. Sonnenberg E, Meyer D, Weidner KM, et al. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993;123:223–35.

    Article  PubMed  Google Scholar 

  31. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:588–610.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Soriano JV, Pepper MS, Nakamura T, et al. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J Cell Sci. 1995;108:413–30.

    PubMed  Google Scholar 

  33. Weidner KM, Sachs M, Birchmeier W. The met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol. 1993;121:145–54.

    Article  PubMed  Google Scholar 

  34. Peschard P, Park M. From tpr-met to met, tumorigenesis and tubes. Oncogene. 2007;26:1276–85.

    Article  PubMed  Google Scholar 

  35. Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25.

    Article  PubMed  Google Scholar 

  36. Saccone S, Narsimhan RP, Gaudino G, et al. Regional mapping of the human hepatocyte growth factor (HGF)-scatter factor gene to chromosome 7q21.1. Genomics. 1992;13(3):912–4.

    Article  PubMed  Google Scholar 

  37. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–6.

    Article  PubMed  Google Scholar 

  38. Bhowmick N, Neilson E, Moses H. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kataoka H, Kawaguchi M. Hepatocyte growth factor activator (HGFA): pathophysiological functions in vivo. FEBS J. 2010;277:2230–7.

    Article  PubMed  Google Scholar 

  40. Tamura M, Daikuhara Y. Structure and function of hepatocyte growth factor/scatter factor (HGF/SF). Curr Topics Biochem Res. 2000;2:149–59.

    Google Scholar 

  41. Basilico C, Arnesano A, Galluzzo M, et al. High affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J Biol Chem. 2008;283:21267–77.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Stamos J, Lazarus RA, Yao X, et al. Crystal structure of the HGF β-chain in complex with the Sema domain of the Met receptor. EMBO J. 2004;23:2325–35.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kataoka H, Miyata S, Uchinokura S. Roles of hepatocyte growth factor (HGF) activator and HGF activator inhibitor in the pericellular activation of HGF/scatter factor. Cancer Metastasis Rev. 2003;22:223–36.

    Article  PubMed  Google Scholar 

  44. Shimomura T, Kondo J, Ochiai M, et al. Activation of the zymogen of hepatocyte growth factor activator by thrombin. J Biol Chem. 1993;268:22927–32.

    PubMed  Google Scholar 

  45. Miyazawa K, Shimomura T, Kitamura N. Activation of hepatocyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J Biol Chem. 1996;271:3615–8.

    Article  PubMed  Google Scholar 

  46. Owen KA, Qiu D, Alves J, et al. Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem J. 2010;426:219–28.

    Article  PubMed  Google Scholar 

  47. Shimomura T, Denda K, Kitamura A, et al. Hepatocyte growth factor activator inhibitor, a novel kunitz-type serine protease inhibitor. J Biol Chem. 1997;272(10):6370–6.

    Article  PubMed  Google Scholar 

  48. Kawaguchi T, Qin L, Shimomura T, et al. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem. 1997;272(44):27558–64.

    Article  PubMed  Google Scholar 

  49. Szabo T, Rasmussen A, Moyer A, et al. c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene. 2011;30:2003–16.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Morris MR, Gentle D, Abdulrahman M, et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res. 2005;65(11):4598–606.

    Article  PubMed  Google Scholar 

  51. Organ S, Tsa M. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–19.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Cooper C, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.

    Article  PubMed  Google Scholar 

  53. Bottaro D, Rubin J, Faletto D, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–4.

    Article  PubMed  Google Scholar 

  54. Park M, Dean M, Cooper C, et al. Mechanism of met oncogene activation. Cell. 1986;45:895–904.

    Article  PubMed  Google Scholar 

  55. Schmidt C, Bladt F, Goedecke S, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373(6516):699–702.

    Article  PubMed  Google Scholar 

  56. Uehara Y, Minowa O, Mori C, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373(6516):702–5.

    Article  PubMed  Google Scholar 

  57. Bladt F, Riethmacher D, Isenmann S, et al. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376:768–71.

    Article  PubMed  Google Scholar 

  58. Ohnishi T, Daikuhara Y. Hepatocyte growth factor/scatter factor in development, inflammation and carcinogenesis: its expression and role in oral tissues. Arch Oral Biol. 2003;48(12):797–804.

    Article  PubMed  Google Scholar 

  59. Kong-Betran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell. 2004;6(1):75–84.

    Article  Google Scholar 

  60. Ponzetto C, Bardelli A, Zhen Z, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.

    Article  PubMed  Google Scholar 

  61. Fixman E, Fournier T, Kamikura D, et al. Pathways downstream of Shc and Grb2 are required for cell transformation by the Tpr-Met oncoprotein. J Biol Chem. 1996;271:13116–22.

    Article  PubMed  Google Scholar 

  62. Schaeper U, Gehring NH, Fuchs KP, et al. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol. 2000;149(7):1419–32.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Gual P, Giordano S, Williams TA, et al. Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene. 2000;19(12):1509–18.

    Article  PubMed  Google Scholar 

  64. Weidner KM, Di Cesare S, Sachs M, et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature. 1996;384:173–6.

    Article  PubMed  Google Scholar 

  65. Maroun C, Naujokas M, Holgado-Madruga M, et al. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol. 2000;20:8513–25.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Schaeper U, Vogel R, Chmielowiec J, et al. Distinct requirements for Gab1 in Met and EGF receptor signaling in vivo. Proc Natl Acad Sci U S A. 2007;104(39):15376–81.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Gandino L, Longai P, Medico E, et al. Phosphorylation of Serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J Biol Chem. 1994;269(3):1815–20.

    PubMed  Google Scholar 

  68. Paumelle R, Tulasne D, Kherrouche Z, et al. Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene. 2002;21:2809–19.

    Article  Google Scholar 

  69. Dhillon AS, Hagan S, Rath O, et al. MAP kinase signaling pathways in cancer. Oncogene. 2007;26:3279–90. doi:10.1038/sj.onc.1210421.

    Article  PubMed  Google Scholar 

  70. Roberts P, Der C. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310. doi:10.1038/sj.onc.1210422.

    Article  PubMed  Google Scholar 

  71. Chang F, Steelman L, Lee J, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia. 2003;17:1263–93. doi:10.1038/sj.leu.2402945.

    Article  PubMed  Google Scholar 

  72. Pelici G, Giordano S, Zhen Z, et al. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene. 1995;10(8):1631–8.

    Google Scholar 

  73. Wennerberg K, Ellerbroek S, Liu R, et al. RhoG signals in parallel with Rac1 and Cdc42. J Biol Chem. 2002;277:47810–7.

    Article  PubMed  Google Scholar 

  74. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4:E131–6. doi:10.1038/ncb0502-e131.

    Article  PubMed  Google Scholar 

  75. Ding X, Pan H, Li J, et al. Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis. Sci Signal. 2013;6(273):1–13. doi:10.1126/scisignal.2003884.

    PubMed  Google Scholar 

  76. Royal I, Lamarche-Vane N, Lamorte L, et al. Activation of Cdc42, Rac, PAK, and Rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell. 2000;11(5):1709–25.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11:2295–322.

    Article  PubMed  Google Scholar 

  78. Burridge K, Wennergerg K. Rho and Rac take center stage. Cell. 2004;116:167–79.

    Article  PubMed  Google Scholar 

  79. Kitajo H, Shibata T, Nagayasu H, et al. Roh regulates the hepatocyte growth factor/scatter factor-stimulated cell motility of human oral squamous cell carcinoma cells. Oncol Rep. 2003;10(5):1351–3156.

    PubMed  Google Scholar 

  80. Mitra S, Hanson D, Schlaepfer D. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 2005;6:56–68. doi:10.1038/nrm1549.

    Article  PubMed  Google Scholar 

  81. Navarro M, Cantrell D. Serine-threonine kinases in TCR signaling. Nat Immun. 2014;15:808–14. doi:10.1038/ni.2941.

    Article  Google Scholar 

  82. Calleja V, Alcor D, Laguerre M, et al. Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Boil. 2007;5(4):e95. doi:10.1371/journal.pbio.0050095.

    Article  Google Scholar 

  83. Ogawara Y, Kishishita S, Obata T, et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002;277(24):21843–50.

    Article  PubMed  Google Scholar 

  84. Gottlieb T, Leal J, Seger R, et al. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene. 2002;21(8):1299–303.

    Article  PubMed  Google Scholar 

  85. Manning B, Cantley L. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Cantley L. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    Article  PubMed  Google Scholar 

  87. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    Article  PubMed  Google Scholar 

  88. Haar E, Lee S, Bandhakavi S, et al. Insulin signaling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9:316–23.

    Article  Google Scholar 

  89. Inoki K, Li Y, Zhu J, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol. 2002;4:648–57.

    Article  PubMed  Google Scholar 

  90. Gilmore T. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25:6680–4. doi:10.1038/sj.onc.1209954.

    Article  PubMed  Google Scholar 

  91. Hoesel B, Schmid J. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86. doi:10.1186/1476-4598-12-86.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Muller M, Morotti A, Ponzetto C. Activation of NF-κB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol. 2002;22:1060–72.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Fan S, Gao M, Meng Q, et al. Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene. 2005;24(10):1749–66.

    Article  PubMed  Google Scholar 

  94. Shintani S, Ishikawa T, Nonaka T, et al. Growth-regulated oncogene-1 expression is associated with angiogenesis and lymph node metastasis in human oral cancer. Oncology. 2004;66(4):316–22.

    Article  PubMed  Google Scholar 

  95. Zhang Y, Wang L, Jove R, et al. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene. 2002;21:217–26.

    Article  PubMed  Google Scholar 

  96. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809. doi:10.1038/nrc2734.

    Article  PubMed  Google Scholar 

  97. Renjini AP, Titus S, Narayan P, et al. STAT3 and MCL-1 associate to cause a mesenchymal epithelial transition. J Cell Sci. 2014;127:1738–50. doi:10.1242/jcs/138214.

    Article  PubMed  Google Scholar 

  98. Klosek SK, Nakashiro K, Hara S, et al. Constitutive activation of Stat3 correlates with increased expression of the c-Met/HGF receptor in oral squamous cell carcinoma. Oncol Rep. 2004;12(2):293–6.

    PubMed  Google Scholar 

  99. Orian-Rousseau V, Chen L, Sleeman J, et al. Cd44 is required for two consecutive steps in hgf/c-met signaling. Genes Dev. 2002;16:3074–86.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Matzke A, Sargsyan V, Holtmann B, et al. Haploinsufficiency of c-Met in cd44 −/− mice identifies a collaboration of CD44 and c-Met in vivo. Mol Cell Biol. 2007;27(24):8797–806. doi:10.1128/mcb.01355-07.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Orian-Rousseau V, Morrison H, Matzke A, et al. Hepatocyte growth factor-induced ras activation requires erm proteins linked to both cd44v6 and f-actin. Mol Biol Cell. 2007;18:76–83.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Olaku V, Matzke A, Mitchell C, et al. C-met recruits icam-1 as a coreceptor to compensate for the loss of cd44 in cd44 null mice. Mol Biol Cell. 2011;22:2777–86.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Singleton PA, Salgia R, Moreno-Vinasco L, et al. Cd44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-met, tiam1/rac1, dynamin 2, and cortactin. J Biol Chem. 2007;282:30643–57.

    Article  PubMed  Google Scholar 

  104. Kligys K, Wu Y, Hopkinson S, et al. α6β4 integrin, a master regulator of expression of integrins in human keratinocytes. J Biol Chem. 2012;287:17975–84. doi:10.1074/jbc.m111.310458.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for α6β4 integrin in the control of hgf-dependent invasive growth. Cell. 2001;107:643–54.

    Article  PubMed  Google Scholar 

  106. Bertotti A, Comoglio PM, Trusolino L. Beta4 integrin is a transforming molecule that unleashes met tyrosine kinase tumorigenesis. Cancer Res. 2005;65:10674–9.

    Article  PubMed  Google Scholar 

  107. Pomerleau V, Landry M, Bernier J, et al. Met receptor-induced Grb2 or Shc signals both promote transformation of intestinal epithelial cells, albeit they are required for distinct oncogenic functions. BMC Cancer. 2014;14:240–54. doi:10.1186/1471-2407-14-240.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Mainiero F, Murgia C, Wary K, et al. The coupling of α6β4 integrin to ras-map kinase pathways mediated by shc controls keratinocyte proliferation. EMBO J. 1997;16:2365–75.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Shinohara M, Nakamura S, Sasaki M, et al. Expression of integrins in squamous cell carcinoma of the oral cavity. Correlations with tumor invasion and metastasis. Am J Clin Pathol. 1999;111(1):75–88.

    PubMed  Google Scholar 

  110. Thorup AK, Reibel J, Schiodt M, et al. Can alterations in integrin and laminin-5 expression be used as markers of malignancy? APMIS. 1998;106(12):1170–80.

    Article  PubMed  Google Scholar 

  111. Hu B, Guo P, Bar-Joseph I, et al. Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene. 2007;26:5577–86.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Conrotto P, Corso S, Gamberini S, et al. Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene. 2004;23:5131–7.

    Article  PubMed  Google Scholar 

  113. Giordano S, Corso S, Conrotto P, et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol. 2002;4(9):720–4.

    Article  PubMed  Google Scholar 

  114. Conrotto P, Valdembri D, Corso S, et al. Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood. 2004;105(11):4321–9.

    Article  Google Scholar 

  115. Sakurai A, Doci C, Gutkind J. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer. Cell Res. 2012;22:23–32. doi:10.1038/cr.2011.198.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Weiming C, Xiaomeng S, Xueming Y, et al. Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma. PLoS One. 2014;9(7):e101931. doi:10.1371/journal.pone.0101931.

    Article  Google Scholar 

  117. Jo M, Stolz D, Esplen J, et al. Cross-talk between epidermal growth factor receptor and c-met signal pathways in transformed cells. J Biol Chem. 2000;275:8806–11.

    Article  PubMed  Google Scholar 

  118. Puri N, Salgia R. Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J Carcinog. 2008;7:9.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Bachleitner-Hofmann T, Sun M, Chen C, et al. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol Cancer Ther. 2008;7:3499–508.

    Article  PubMed  Google Scholar 

  120. Lan S, Wu S, Raghavaraju G, et al. The crosstalk of c-MET with related receptor tyrosine kinases in urothelial bladder cancer. In: Persad R, Ranasinghe W, editors. Advances in the scientific evaluation of bladder cancer and molecular basis for diagnosis and treatment. Rijeka, Croatia: InTech; 2013. doi:10.5772/53718.

    Google Scholar 

  121. Nath D, Williamson NJ, Jarvis R, et al. Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci. 2001;114(Pt6):1213–20.

    PubMed  Google Scholar 

  122. Merlin S, Pietronave S, Locarno D, et al. Deletion of the ectodomain unleashes the transforming, invasive, and tumorigenic potential of the MET oncogene. Cancer Sci. 2009;100(4):633–8. doi:10.1111/j.1349-7006.

    Article  PubMed  Google Scholar 

  123. Reznik T, Sang Y, Ma Y, et al. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor. Mol Cancer Res. 2008;6(1):139–50. doi:10.1158/1541-7786.mcr-07-0236.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Linger R, Keating A, Earp H, et al. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83. doi:10.1016/s0065-230x(08)00002-x.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Linger R, Keating A, Earp H, et al. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic target in solid tumors. Expert Opin Ther Targets. 2010;14(10):1073–90. doi:10.1517/14728222.2010.515980.

    Article  PubMed Central  PubMed  Google Scholar 

  126. Utoh R, Shigenaga S, Watanabe Y, et al. Platelet-derived growth factor signaling as a cue of the epithelial-mesenchymal interaction required for anuran skin metamorphosis. Dev Dyn. 2003;227(2):157–69.

    Article  PubMed  Google Scholar 

  127. Yeh C, Shin S, Yeh H, et al. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and src-independent mechanism in human bladder cancer. BMC Cancer. 2011;11:139. doi:10.1186/1471-2407-11-139.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Meric F, Lee W, Sahin A, et al. Expression profile of tyrosine kinases in breast cancer. Clin Cancer Res. 2002;8(2):361–7.

    PubMed  Google Scholar 

  129. Chung B, Malkowicz S, Nguyen T, et al. Expression of the proto-oncogene Axl in renal cell carcinoma. DNA Cell Biol. 2003;22(8):533–40.

    Article  PubMed  Google Scholar 

  130. Follenzi A, Bakovic S, Gual P, et al. Cross-talk between the proto-oncogenes Met and Ron. Oncogene. 2000;19(27):3041–9.

    Article  PubMed  Google Scholar 

  131. Fischer O, Giordano S, Comoglio P, et al. Reactive oxygen species mediate met receptor transactivation by g protein-coupled receptors and the epidermal growth factor receptor in human carcinoma cells. J Biol Chem. 2004;279:28970–8.

    Article  PubMed  Google Scholar 

  132. Palka H, Park M, Tonks N. Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem. 2003;278(8):5728–35.

    Article  PubMed  Google Scholar 

  133. Xu Y, Xia W, Baker D, et al. Receptor-type protein tyrosine phosphatase beta (RPTP-beta) directly dephosphorylates and regulates hepatocyte growth factor receptor (HGFR/Met) function. J Biol Chem. 2011;286(18):15980–159808. doi:10.1074/jbc.M110.212597.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Acton A, editor. Peptide receptors – advances in research and application. Atlanta: Scholarly Editions; 2012.

    Google Scholar 

  135. Xu Y, Zhou J, Carey T, et al. Receptor-type protein tyrosine phosphatase β regulates met phosphorylation and function in head and neck squamous cell carcinoma. Neoplasia. 2012;14(11):1015–22.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Lesko E, Majka M. The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci. 2008;13:1271–80.

    Article  PubMed  Google Scholar 

  137. Foveau B, Ancot F, Leroy C, et al. Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol Biol Cell. 2009;20:2495–507.

    Article  PubMed Central  PubMed  Google Scholar 

  138. Michieli P, Mazzone M, Basilico C, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell. 2004;6(1):61–73.

    Article  PubMed  Google Scholar 

  139. Zhang Y, Graveel C, Shinomiya N, et al. Met decoys: will cancer take the bait? Cancer Cell. 2004;6:5–6.

    Article  PubMed  Google Scholar 

  140. Peschard P, Fournier T, Lamorte L, et al. Mutation of the c-Cbl TKB domain binding site on the MET receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8(5):995–1004.

    Article  PubMed  Google Scholar 

  141. Kermorgant S, Parker P. c-Met signaling: spatio-temporal decisions. Cell Cycle. 2005;4(3):352–5.

    Article  PubMed  Google Scholar 

  142. Petrelli A, Gilestro G, Lanzardo S, et al. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002;416:187–90.

    Article  PubMed  Google Scholar 

  143. Oved S, Yarden Y. Signal transduction: molecular ticket to enter cells. Nature. 2002;416:133–6.

    Article  PubMed  Google Scholar 

  144. Kermorgant S, Parker P. Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol. 2008;182:855–63.

    Article  PubMed Central  PubMed  Google Scholar 

  145. Kermorgant S, Zicha D, Parker P. PKC controls HGF-dependent c-Met traffic, signaling and cell migration. EMBO J. 2004;23:3721–34.

    Article  PubMed Central  PubMed  Google Scholar 

  146. Rosse C, Linch M, Kermorgant S, et al. PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol. 2010;11(2):103–12. doi:10.1038/nrm2847.

    Article  PubMed  Google Scholar 

  147. Kermorgant S, Zicha D, Parker P. Protein kinase C controls microtubule-based traffic but not proteasomal degradation of c-Met. J Biol Chem. 2003;278:28921–9.

    Article  PubMed  Google Scholar 

  148. Shattuck D, Miller J, Laederich M, et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol. 2007;27(5):1934–46.

    Article  PubMed Central  PubMed  Google Scholar 

  149. Cipres A, Abassi Y, Vuori K. Abl functions as a negative regulator of Met-induced cell motility via phosphorylation of the adapter protein CrkII. Cell Signal. 2007;19(8):1662–70. doi:10.1016/j.cellsig.2007.02.011.

    Article  PubMed  Google Scholar 

  150. Gandino L, Munaron L, Naldini L, et al. Intracellular calcium regulates the tyrosine kinase receptor encoded by the MET oncogene. J Biol Chem. 1991;266(24):16098–104.

    PubMed  Google Scholar 

  151. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.

    Article  PubMed  Google Scholar 

  152. Hu G, Chen D, Li X, et al. Mir-133b regulates the met proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther. 2010;10:190–7.

    Article  PubMed  Google Scholar 

  153. Salvi A, Sabelli C, Moncini S, et al. Microrna-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J. 2009;276:2966–82.

    Article  PubMed  Google Scholar 

  154. Kim S, Lee U, Kim M, et al. MicroRNA mir-199a* regulates the met proto-oncogene and the downstream extracellular signal-regulated kinase 2 (erk2). J Biol Chem. 2008;283:18158–66.

    Article  PubMed  Google Scholar 

  155. Migliore C, Petrelli A, Ghiso E, et al. MicroRNAs impair met-mediated invasive growth. Cancer Res. 2008;68:10128–36.

    Article  PubMed  Google Scholar 

  156. Seiwert T, Jagadeeswaran R, Faoro L, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69(7):3021–31. doi:10.1158/0008-5472.CAN-08-2881.

    Article  PubMed Central  PubMed  Google Scholar 

  157. Tao X, Hill K, Gaziova I, et al. Silencing Met receptor tyrosine kinase signaling decreased oral tumor growth and increased survival of nude mice. Oral Oncol. 2014;50:104–12.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Knowles L, Stabile L, Egloff A, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15:3740–50.

    Article  PubMed Central  PubMed  Google Scholar 

  159. Kim C, Lee J, Kang S, et al. Serum hepatocyte growth factor as a marker of tumor activity in head and neck squamous cell carcinoma. Oral Oncol. 2007;43:1021–5.

    Article  PubMed  Google Scholar 

  160. Elferink L, Resto V. Receptor-tyrosine-kinase-targeted therapies for head and neck cancer. J Sig Trans. 2011;2011:1–11. doi:10.1155/2011/982879.

    Google Scholar 

  161. Di Renzo M, Olivero M, Martone T, et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene. 2000;19:1547–55.

    Article  PubMed  Google Scholar 

  162. Schmidt L, Duh F, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  PubMed  Google Scholar 

  163. Nguyen D, Bos P, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84. doi:10.1038/nrc2622.

    Article  PubMed  Google Scholar 

  164. Choe J, Yun J, Nam S, et al. Expression of c-Met is different along the location and associated with lymph node metastasis of head and neck carcinoma. Korean J Pathol. 2012;46:515–22.

    Article  PubMed Central  PubMed  Google Scholar 

  165. Chen Y, Wang J, Chang Y, et al. Expression of hepatocyte growth factor and c-met protein is significantly associated with the progression of oral squamous cell carcinoma in Taiwan. J Oral Pathol Med. 2004;33:209–17.

    Article  PubMed  Google Scholar 

  166. Kim C, Moon S, Bae J, et al. Expression of hepatocyte growth factor and c-met in hypopharyngeal squamous cell carcinoma. Acta Otolaryngol. 2006;126:88–94.

    Article  PubMed  Google Scholar 

  167. Galeazzi E, Olivero M, Gervasio F, et al. Detection of met oncogene/hepatocyte growth factor receptor in lymph node metastases from head and neck squamous cell carcinomas. Eur Arch Otorhinolaryngol. 1997;254:S138–43.

    Article  PubMed  Google Scholar 

  168. Lo Muzio L, Leonardi R, Mignogna M, et al. Scatter factor receptor (c-met) as possible prognostic factor in patients with oral squamous cell carcinoma. Anticancer Res. 2004;24:1063–9.

    PubMed  Google Scholar 

  169. Ren Y, Cao B, Law S, et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: A prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res. 2005;11:6190–7.

    Article  PubMed  Google Scholar 

  170. Eliassen A, Hauff S, Tang A, et al. Head and neck squamous cell carcinoma in pregnant women. Head Neck. 2013;35(3):335–42.

    Article  PubMed Central  PubMed  Google Scholar 

  171. Matsumoto K, Matsumoto K, Nakamura T, et al. Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinomas. J Biol Chem. 1994;269(50):31807–13.

    PubMed  Google Scholar 

  172. Aronsohn M, Brown H, Hauptman G, et al. Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx. Laryngoscope. 2003;113(11):1944–8.

    Article  PubMed  Google Scholar 

  173. Canel M, Secades P, Garzon-Arango M, et al. Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer. 2008;98(7):1274–84.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Schneider G, Kurago Z, Zaharias R, et al. Elevated focal adhesion kinase expression facilitates oral tumor cell invasion. Cancer. 2002;95(12):2508–15.

    Article  PubMed  Google Scholar 

  175. Sen B, Peng S, Saigal B, et al. Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clin Cancer Res. 2011;17(3):514–24.

    Article  PubMed Central  PubMed  Google Scholar 

  176. Dong G, Loukinova E, Chen Z, et al. Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis, and the NF-κB signal pathway. Cancer Res. 2001;61:4797–808.

    PubMed  Google Scholar 

  177. Maitre J, Heisenberg C. Three functions of cadherins in cell adhesion. Curr Biol. 2013;23(14):R626–33.

    Article  PubMed Central  PubMed  Google Scholar 

  178. Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol. 1995;7(5):619–27.

    Article  PubMed  Google Scholar 

  179. Frixen U, Behrens J, Sachs M, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–85.

    Article  PubMed  Google Scholar 

  180. Jeans A, Gottardi C, Yap A. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008;27(55):6920–9.

    Article  Google Scholar 

  181. Navarro P, Gomez M, Pizarro A, et al. A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epithermal carcinogenesis. J Cell Biol. 1991;115(2):517–33.

    Article  PubMed  Google Scholar 

  182. Eriksen J, Steiniche T, Sogaard H, et al. Expression of integrins and E-cadherin in squamous cell carcinomas of the head and neck. APMIS. 2004;112(9):560–8.

    Article  PubMed  Google Scholar 

  183. Lim S, Zhang S, Ishii G, et al. Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin Cancer Res. 2004;10:166–72.

    Article  PubMed  Google Scholar 

  184. Kudo Y, Kitajima S, Ogawa I, et al. Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res. 2004;10(16):5455–63.

    Article  PubMed  Google Scholar 

  185. Li C, Berx G, Larsson C, et al. Distinct deleted regions on chromosome segment 16q23-24 associated with metastases in prostate cancer. Genes Chromosomes Cancer. 1999;24(3):175–82.

    Article  PubMed  Google Scholar 

  186. Cano A, Perez-Moreno M, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing e-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  PubMed  Google Scholar 

  187. Kim C, Kim J, Kahng H, et al. Change of e-cadherin by hepatocyte growth factor and effects on the prognosis of hypopharyngeal carcinoma. Ann Surg Oncol. 2007;14:1565–74.

    Article  PubMed  Google Scholar 

  188. Grotegut S, von Schweinitz D, Christofori G, et al. Hepatocyte growth factor induces cell scattering through mapk/egr-1 mediated upregulation of snail. EMBO J. 2006;25:3534–45.

    Article  PubMed Central  PubMed  Google Scholar 

  189. Yokohama K, Kamata N, Fujimoto R, et al. Increased invasion and matrix metalloproteinase-2 expression by snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol. 2003;22:891–8.

    Google Scholar 

  190. Yokoyama K, Kamata N, Hayashi E, et al. Reverse correlation of e-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 2001;37:65–71.

    Article  PubMed  Google Scholar 

  191. Folgueras A, Pendas A, Sanchez L, et al. Matrix metalloproteinase in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 2004;48:411–24.

    Article  PubMed  Google Scholar 

  192. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74. doi:10.1038/nrc745.

    Article  PubMed  Google Scholar 

  193. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi:10.1016/j.cell.2010.03.015.

    Article  PubMed Central  PubMed  Google Scholar 

  194. Ondruschka C, Buhtz P, Motsch C, et al. Prognostic value of MMP-2, -9, and TIMP-1, -2 immunoreactive protein at the invasive front in advanced head and neck squamous cell carcinomas. Pathol Res Pract. 2002;198(8):509–15.

    Article  PubMed  Google Scholar 

  195. O-Charoenrat P, Rhys-Evans P, Eccles S. Expression of matrix metalloproteinases and their inhibitors correlates with invasion and metastasis in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg. 2001;127(7):813–20.

    PubMed  Google Scholar 

  196. Zhang W, Matrisian L, Holmbeck K, et al. Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo. BMC Cancer. 2006;6:52–60. doi:10.1186/1471-2407-6-52.

    Article  PubMed Central  PubMed  Google Scholar 

  197. Lim Y, Park H, Hwang H, et al. (−)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Lett. 2008;271(1):140–52. doi:10.1016/j.canlet.2008.05.048.

    Article  PubMed  Google Scholar 

  198. Hanzawa M, Shindoh M, Higashino F, et al. Hepatocyte growth factor upregulates E1AF that induces oral squamous cell carcinoma cell invasion by activating matrix metalloproteinase genes. Carcinogenesis. 2000;21(6):1079–85.

    Article  PubMed  Google Scholar 

  199. Hauff S, Raju S, Orosco R, et al. Matrix-metalloproteinases in head and neck carcinoma-cancer genome atlas analysis and fluorescence imaging in mice. Otolaryngol Head Neck Surg. 2014;151(4):612–8. doi:10.1177/0194599814545083.

    Article  PubMed Central  PubMed  Google Scholar 

  200. Frisch S, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124(4):619–26.

    Article  PubMed  Google Scholar 

  201. Frisch S, Screaton R. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13(5):555–62.

    Article  PubMed  Google Scholar 

  202. Zeng Q, Chen S, You Z, et al. Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappaB. J Biol Chem. 2002;277(28):25203–8.

    Article  PubMed  Google Scholar 

  203. Zeng Q, McCauley L, Wang CY. Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2 implication in head and neck squamous cell carcinoma progression. J Biol Chem. 2002;277:50137–42. doi:10.1074/jbc.M208952200.

    Article  PubMed  Google Scholar 

  204. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  Google Scholar 

  205. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.

    Article  PubMed  Google Scholar 

  206. Walsh J, Lathers D, Chi A, et al. Mechanisms of tumor growth and metastasis in head and neck squamous cell carcinoma. Curr Treat Options Oncol. 2007;8(3):227–38.

    Article  PubMed  Google Scholar 

  207. Grugan K, Miller C, Yao Y, et al. Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc Natl Acad Sci U S A. 2010;107(24):11026–31.

    Article  PubMed Central  PubMed  Google Scholar 

  208. Dong G, Lee T, Yeh N, et al. Metastatic squamous cell carcinoma cells that overexpress c-Met exhibit enhanced angiogenesis factor expression, scattering and metastasis in response to hepatocyte growth factor. Oncogene. 2004;23:6199–208.

    Article  PubMed  Google Scholar 

  209. Dong G, Chen Z, Li Z, et al. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 2001;61:5911–8.

    PubMed  Google Scholar 

  210. Eisma R, Spiro J, Kreutzer D. Role of angiogenic factors: coexpression of interleukin-8 and vascular endothelial growth factor in patients with head and neck squamous carcinoma. Laryngoscope. 1999;109(5):687–93.

    Article  PubMed  Google Scholar 

  211. Bancroft C, Chen Z, Dong G, et al. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways. Clin Cancer Res. 2001;7(2):435–42.

    PubMed  Google Scholar 

  212. Bancroft C, Chen Z, Yeh J, et al. Effects of pharmacologic antagonists of epidermal growth factor receptor, PI3K and MEK signal kinases on NF-kappaB and AP-1 activation and IL-8 and VEGF expression in human head and neck squamous cell carcinoma lines. Int J Cancer. 2002;99(4):538–48.

    Article  PubMed  Google Scholar 

  213. Suh Y, Amelio I, Guerrero Urbano T, et al. Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis. 2014;5:31018. doi:10.1038/cddis.2013.548.

    Article  Google Scholar 

  214. Zeng Q, Li S, Chepeha D, et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell. 2005;8(1):13–23. doi:10.1016/j.ccr.2005.06.004.

    Article  PubMed  Google Scholar 

  215. Beasley N, Prevo R, Banerji S, et al. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res. 2002;62(5):1315–20.

    PubMed  Google Scholar 

  216. Puri S, Fan C, Hanna E. Significance of extracapsular lymph node metastases in patients with head and neck squamous cell carcinoma. Curr Opin Otolaryngol Head Neck Surg. 2003;11(2):119–23.

    Article  PubMed  Google Scholar 

  217. Da M, Wu Z, Tian H. Tumor lymphangiogenesis and lymphangiogenic growth factors. Arch Med Res. 2008;39(4):365–72.

    Article  PubMed  Google Scholar 

  218. Alitalo K, Tammela T, Petrova T. Lymphangiogenesis in development and human disease. Nature. 2005;438(7070):946–53.

    Article  PubMed  Google Scholar 

  219. Gale N, Thurston G, Davis S, et al. Complementary and coordinated roles of the VEGFs and angiopoietins during normal and pathologic vascular formation. Cold Spring Harb Symp Quant Biol. 2002;67:267–73.

    Article  PubMed  Google Scholar 

  220. Zheng W, Tammela T, Yamamoto M, et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 2011;118(4):1154–62. doi:10.1182/blood-2010-11-317800.

    Article  PubMed  Google Scholar 

  221. Mohammed R, Green A, El-Shikh S, et al. Prognostic significance of vascular endothelial cell growth factors –A, −C and –D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer. 2007;96(7):1092–100.

    Article  PubMed Central  PubMed  Google Scholar 

  222. Kajiya K, Hirakawa S, Ma B, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J. 2005;24(16):2885–95.

    Article  PubMed Central  PubMed  Google Scholar 

  223. Sun S, Wang Z. Head neck squamous cell carcinoma c-Met + cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer. 2011;129:2337–48.

    Article  PubMed  Google Scholar 

  224. Major A, Pitty L, Farah C. Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cell Int. 2013;2013:319489. doi:10.1155/2013/319489.

    Google Scholar 

  225. Lim Y, Kang H, Moon J. c-Met pathway promotes self-renewal and tumorigenicity of head and neck squamous cell carcinoma stem-like cell. Oral Oncol. 2014;50:633–9.

    Article  PubMed  Google Scholar 

  226. Sun S, Liu S, Duan S, et al. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res. 2014;74(24):7546–59. doi:10.1158/0008-5472.CAN-14-0826.

    Article  PubMed  Google Scholar 

  227. Park I, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    Article  PubMed  Google Scholar 

  228. Liu S, Dontu G, Mantle I, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.

    Article  PubMed Central  PubMed  Google Scholar 

  229. Aebersold D, Kollar A, Beer K, et al. Involvement of the hepatocyte growth factor/scatter factor receptor c-met and of bcl-xl in the resistance of oropharyngeal cancer to ionizing radiation. Int J Cancer. 2001;96:41–54.

    Article  PubMed  Google Scholar 

  230. Akervall J, Guo X, Qian C, et al. Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res. 2004;10:8204–13.

    Article  PubMed  Google Scholar 

  231. Fan S, Ma Y, Wang J, et al. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3’ kinase. Oncogene. 2000;19:2212–23.

    Article  PubMed  Google Scholar 

  232. Cassell A, Grandis J. Investigational EGFR-targeted therapies in HNSCC. Expert Opin Investig Drugs. 2010;19(6):709–22. doi:10.1517/13543781003759844.

    Article  PubMed Central  PubMed  Google Scholar 

  233. Engelman J, Zejnullahu K, Mitsudomi T. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  PubMed  Google Scholar 

  234. Lau P, Chan A. Novel therapeutic target for head and neck squamous cell carcinoma: Hgf-met signaling pathway. Anticancer Drugs. 2011;22:665–73.

    Article  PubMed  Google Scholar 

  235. Timpson P, Wilson A, Lehrbach G, et al. Aberrant expression of cortactin in head and neck squamous cell carcinoma cells is associated with enhanced cell proliferation and resistance to the epidermal growth factor receptor inhibitor gefitinib. Cancer Res. 2007;67:9304–14.

    Article  PubMed  Google Scholar 

  236. Stabile L, He G, Lui V. C-src activation mediates erlotinib resistance in head and neck cancer by stimulating c-met. Clin Cancer Res. 2013;19:380–92.

    Article  PubMed Central  PubMed  Google Scholar 

  237. Matsumoto K, Nakamura T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 2003;94(4):321–7.

    Article  PubMed  Google Scholar 

  238. Matsumoto G, Omi Y, Lee U, et al. NK4 gene therapy combined with cisplatin inhibits tumor growth and metastasis of squamous cell carcinoma. Anticancer Res. 2011;31(1):105–11.

    PubMed  Google Scholar 

  239. Munshi N, Jeay S, Li Y, et al. ARQ179, a novel and selective inhibitor of the human c-met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther. 2010;9:1544–53.

    Article  PubMed  Google Scholar 

  240. Bagai R, Fan W, Ma P. ARQ-197, an oral small-molecule inhibitor of c-Met for the treatment of solid tumors. IDrugs. 2010;13(6):404–14.

    PubMed  Google Scholar 

  241. Schiller J, Arkerley W, Brugger, et al. Results from ARQ 197–209: a global randomized placebo-controlled phase II clinical trial of erlotinib plus ARQ 197 versus placebo in previously treated EGFR inhibitor-naïve patients with locally advanced or metastatic non-small cell lung cancer. J Clin Oncol. 2010;28:18s.

    Google Scholar 

  242. Comoglio P, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Disc. 2008;7(6):504–16.

    Article  Google Scholar 

  243. Yan S, Peek V, Ajamie R, et al. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest New Drugs. 2013;31(4):833–44. doi:10.1007/s10637-012-9912-9.

    Article  PubMed Central  PubMed  Google Scholar 

  244. Eder J, Woude G, Boerner S, et al. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14.

    Article  PubMed  Google Scholar 

  245. Christensen J, Zou H, Arango M, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplstic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007;6:3314–22.

    Article  PubMed  Google Scholar 

  246. Xu H, Stabile L, Gubish C, et al. Dual blockade of egfr and c-met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res. 2011;17:4425–38.

    Article  PubMed Central  PubMed  Google Scholar 

  247. Burgess T, Coxon A, Meyer S, et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-met-dependent human tumors. Cancer Res. 2006;66:1721–9.

    Article  PubMed  Google Scholar 

  248. Kakkar T, Ma M, Zhuang Y, et al. Pharmacokinetics and safety of a fully human hepatocyte growth factor antibody, amg 102, in cynomolgus monkeys. Pharm Res. 2007;24:1910–8.

    Article  PubMed  Google Scholar 

  249. Rosen P, Sweeney C, Park D, et al. A phase ib study of amg 102 in combination with bevacizumab or motesanib in patients with advanced solid tumors. Clin Cancer Res. 2010;16:2677–87.

    Article  PubMed  Google Scholar 

  250. Wen P, Schiff D, Cloughesy T, et al. A phase ii study evaluating the efficacy and safety of amg 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 2011;13:437–46.

    Article  PubMed Central  PubMed  Google Scholar 

  251. Martens T, Schmidt N, Eckerich C, et al. A novel one-armed anti-c-met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res. 2006;12:6144–52.

    Article  PubMed  Google Scholar 

  252. Lee B, Kang S, Kim K. Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGF-1 expression. Cell Death Dis. 2014;5:e1159. doi:10.1038/cddis.2014.119.

    Article  PubMed  Google Scholar 

  253. Lilly E and Company. A Study of LY2801653 in Advanced Cancer. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2015 Dec 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT01285037 NLM Identifier: NCT01285037.

  254. Salgia R, Hong DS, Camacho LH, Ng S, Janisch L, Ratain MJ, et al. A phase I dose-escalation study of the safety and pharmacokinetics (PK) of XL184, a VEGFR and MET kinase inhibitor, administered orally to patients (pts) with advanced malignancies (Abstr 14031). J Clin Oncol. 2007;25.

    Google Scholar 

  255. Feng L, Wang Z. Clinical trials in chemoprevention of head and neck cancers. Rev Recent Clin Trials. 2012;7:249–54.

    Google Scholar 

  256. M.D. Anderson Cancer Center, Pfizer. Dasatinib and Crizotinib in Advanced Cancer. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2015 Dec 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT01744652?term=pf-02341066&rank=1 NLM Identifier: NCT01744652.

  257. Blumenschein G, Mills G, Gonzalez-Angulo A. Targeting the Hepatocyte Growth Factor – cMET Axis in Cancer Therapy. J Clin Oncol. 2012;30:3287–96.

    Google Scholar 

  258. Sierra J, Tsao M. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3:S21–35.

    Google Scholar 

  259. Amgen. Phase 1/1b Study of Rilotumumab in Japanese Subjects with Advanced Solid Tumors or Advanced Metastatic Gastric or GEJ. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2015 Dec 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT01791374?term=rilotumumab&rank=1 NLM Identifier: NCT01791374.

  260. Amgen. First-Line Treatment for Locally Advanced or Metastatic Mesenchymal Epithelial Transition Factor (MET) Positive Gastric, Lower Esophageal, or Gastroesophageal junection(GEJ) Adenocarcinoma. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2015 Dec 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT01697072 NLM Identifier: NCT01697072.

  261. Elferink L, Resto V. Receptor-Tyrosine-Kinase-Targeted Therapies for Head and Neck Cancer. J Signal Transduct. 2011;2011:1–12.

    Google Scholar 

  262. Lee B, Kang S, Kim K, Song Y, Cheong K, Cha H, Kim C. Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death and Disease. 2014;5:e1159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Yu Wang DDS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chang, I., Rehman, A.O., Wang, CY. (2016). Molecular Signaling in Oral Cancer Invasion and Metastasis. In: M. Fribley, A. (eds) Targeting Oral Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-27647-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27647-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27645-8

  • Online ISBN: 978-3-319-27647-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics