Skip to main content

The Unfolded Protein Response as a Therapeutic Target for Head and Neck Squamous Cell Carcinoma

  • Chapter
  • First Online:
Targeting Oral Cancer

Abstract

The epidemiology of head and neck malignancies and the survival rates for oral cancer patients are discussed in a cogent and thorough fashion throughout Targeting Oral Cancer. It is clear that a wide range of challenges, including disparity in health-care resources and research funding opportunities, and low prioritization by foundations and other organizations have left head and neck squamous cell carcinoma (HNSCC) patients in a remote corner of a huge outcome gap. Despite progress in multimodal therapies, responses to treatment and survival rates experienced by HNSCC patients lag egregiously behind the improvements that have been realized in other cancers. We should not lose focus of the fact that the 5-year survival rate for HNSCC is less than 50 % and very often accompanied by challenging and painful disfigurement. These dire statistics highlight the urgency of the problem. Also, comprehensive data indicating that ~70 % of HNSCC patients are still diagnosed at stages III or IV (Ferrari et al., Expert Opin Pharmacother 10(16):2625–32, 2009; Specenier and Vermorken, Expert Rev Anticancer Ther 8(3):375–91, 2008) underscores our need to diagnose patients sooner. Our continued inability to treat patients with chemotherapy whose metastatic and recurrent disease have outpaced the limitations of surgery and radiation therapy sentences them to an average median progression-free survival of ~6 months (Ferrari et al., Expert Opin Pharmacother 10(16):2625–32, 2009; Specenier and Vermorken, Expert Rev Anticancer Ther 8(3):375–91, 2008). Novel therapeutic targets and innovative strategies are urgently needed for a cancer that has seen little improvement over the last three decades. In this chapter we will discuss targeting the unfolded protein response (UPR) with small molecules and natural products as a novel anti-cancer approach in HNSCC models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenberg B, VanCamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222(5191):385–6. Epub 1969/04/26.

    Article  PubMed  Google Scholar 

  2. Rosenberg B, Van Camp L, Grimley EB, Thomson AJ. The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J Biol Chem. 1967;242(6):1347–52. Epub 1967/03/25.

    PubMed  Google Scholar 

  3. Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, Schneider M, et al. Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1993;11(10):1873–8. Epub 1993/10/01.

    Google Scholar 

  4. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695–709. Epub 2008/05/20.

    Article  PubMed  Google Scholar 

  5. Rivera F, Garcia-Castano A, Vega N, Vega-Villegas ME, Gutierrez-Sanz L. Cetuximab in metastatic or recurrent head and neck cancer: the EXTREME trial. Expert Rev Anticancer Ther. 2009;9(10):1421–8. Epub 2009/10/16.

    Article  PubMed  Google Scholar 

  6. Limesand KH, Chibly AM, Fribley A. Impact of targeting insulin-like growth factor signaling in head and neck cancers. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc. 2013;23(5):135–40. Epub 2013/07/03.

    Article  Google Scholar 

  7. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73(1):128–38. Epub 2012/11/09.

    Article  PubMed  Google Scholar 

  8. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, et al. Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733–41. Epub 2013/01/05.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5. Epub 2003/10/16.

    PubMed  Google Scholar 

  10. Ukpo OC, Thorstad WL, Lewis Jr JS. B7-H1 expression model for immune evasion in human papillomavirus-related oropharyngeal squamous cell carcinoma. Head Neck Pathol. 2013;7(2):113–21. Epub 2012/11/28.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhang F, Liu Z, Cui Y, Wang G, Cao P. The clinical significance of the expression of costimulatory molecule PD-L1 in nasopharyngeal carcinoma. Lin chuang er bi yan hou tou jing wai ke za zhi = J Clin Otorhinolaryngol Head Neck Surg. 2008;22(9):408–10. Epub 2008/07/26.

    Google Scholar 

  12. Hsu MC, Hsiao JR, Chang KC, Wu YH, Su IJ, Jin YT, et al. Increase of programmed death-1-expressing intratumoral CD8 T cells predicts a poor prognosis for nasopharyngeal carcinoma. Mod Pathol Off J U S Can Acad Pathol Inc. 2010;23(10):1393–403. Epub 2010/07/27.

    Google Scholar 

  13. Cho YA, Yoon HJ, Lee JI, Hong SP, Hong SD. Relationship between the expressions of PD-L1 and tumor-infiltrating lymphocytes in oral squamous cell carcinoma. Oral Oncol. 2011;47(12):1148–53. Epub 2011/09/14.

    Article  PubMed  Google Scholar 

  14. Zandberg DP, Strome SE. The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 2014;50(7):627–32. Epub 2014/05/14.

    Article  PubMed  Google Scholar 

  15. Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A. Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene. 1997;15(5):579–84. Epub 1997/07/31.

    Article  PubMed  Google Scholar 

  16. Franklin S, Pho T, Abreo FW, Nassar R, De Benedetti A, Stucker FJ, et al. Detection of the proto-oncogene eIF4E in larynx and hypopharynx cancers. Arch Otolaryngol Head Neck Surg. 1999;125(2):177–82. Epub 1999/02/26.

    Article  PubMed  Google Scholar 

  17. DeFatta RJ, Nathan CO, De Benedetti A. Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope. 2000;110(6):928–33. Epub 2000/06/14.

    Article  PubMed  Google Scholar 

  18. Wang S, Lloyd RV, Hutzler MJ, Rosenwald IB, Safran MS, Patwardhan NA, et al. Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma. Thyroid Off J Am Thyroid Assoc. 2001;11(12):1101–7. Epub 2002/08/21.

    Article  Google Scholar 

  19. Chandy B, Abreo F, Nassar R, Stucker FJ, Nathan CO. Expression of the proto-oncogene eIF4E in inflammation of the oral cavity. Otolaryngol Head Neck Surg Off J Am Acad Otolaryngol Head Neck Surg. 2002;126(3):290–5. Epub 2002/04/17.

    Article  Google Scholar 

  20. Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, et al. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(17):5820–7. Epub 2004/09/10.

    Article  Google Scholar 

  21. Culjkovic B, Borden KL. Understanding and targeting the eukaryotic translation initiation factor eIF4E in head and neck cancer. J Oncol. 2009;2009:981679. Epub 2010/01/06.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fribley AM, Cruz PG, Miller JR, Callaghan MU, Cai P, Narula N, et al. Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response. J Biomol Screen. 2011;16(8):825–35. Epub 2011/08/17.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Xi Y, Garshott DM, Brownell AL, Yoo GH, Lin HS, Freeburg TL, et al. Cantharidins induce ER stress and a terminal unfolded protein response in OSCC. J Dent Res. 2015;94(2):320–9.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Fribley AM, Miller JR, Brownell AL, Garshott DM, Zeng Q, Reist TE, et al. Celastrol induces unfolded protein response-dependent cell death in head and neck cancer. Exp Cell Res. 2015;330(2):412–22.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Flaherty DP, Miller JR, Garshott DM, Hedrick M, Gosalia P, Li Y, et al. Discovery of sulfonamidebenzamides as selective apoptotic CHOP pathway activators of the unfolded protein response. ACS Med Chem Lett. 2014;5(12):1278–83. Epub 2014/12/23.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wang CY, Mayo MW, Baldwin Jr AS. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science. 1996;274(5288):784–7. Epub 1996/11/01.

    Article  PubMed  Google Scholar 

  27. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 1996;274(5288):782–4. Epub 1996/11/01.

    Article  PubMed  Google Scholar 

  28. Chen S, Fribley A, Wang CY. Potentiation of tumor necrosis factor-mediated apoptosis of oral squamous cell carcinoma cells by adenovirus-mediated gene transfer of NF-kappaB inhibitor. J Dent Res. 2002;81(2):98–102. Epub 2002/02/06.

    Article  PubMed  Google Scholar 

  29. Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8(1):33–40. Epub 2009/01/01.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Adams J. Proteasome inhibition in cancer: development of PS-341. Semin Oncol. 2001;28(6):613–9. Epub 2001/12/12.

    Article  PubMed  Google Scholar 

  31. Adams J, Palombella VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs. 2000;18(2):109–21. Epub 2000/06/17.

    Article  PubMed  Google Scholar 

  32. Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett. 1998;8(4):333–8. Epub 1999/01/01.

    Article  PubMed  Google Scholar 

  33. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003;101(6):2377–80. Epub 2002/11/09.

    Article  PubMed  Google Scholar 

  34. Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003;101(4):1530–4. Epub 2002/10/24.

    Article  PubMed  Google Scholar 

  35. Sunwoo JB, Chen Z, Dong G, Yeh N, Crowl Bancroft C, Sausville E, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2001;7(5):1419–28. Epub 2001/05/15.

    Google Scholar 

  36. Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol. 2004;24(22):9695–704. Epub 2004/10/29.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002;99(22):14374–9. Epub 2002/10/23.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Zimmermann J, Erdmann D, Lalande I, Grossenbacher R, Noorani M, Furst P. Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1. Oncogene. 2000;19(25):2913–20. Epub 2000/06/29.

    Article  PubMed  Google Scholar 

  39. Van Waes C, Chang AA, Lebowitz PF, Druzgal CH, Chen Z, Elsayed YA, et al. Inhibition of nuclear factor-kappaB and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2005;63(5):1400–12. Epub 2005/07/12.

    Article  PubMed  Google Scholar 

  40. Grimes KR, Daosukho C, Zhao Y, Meigooni A, St Clair W. Proteasome inhibition improves fractionated radiation treatment against non-small cell lung cancer: an antioxidant connection. Int J Oncol. 2005;27(4):1047–52. Epub 2005/09/06.

    PubMed  Google Scholar 

  41. Lee DH, Goldberg AL. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol. 1998;18(1):30–8. Epub 1998/01/07.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kawazoe Y, Nakai A, Tanabe M, Nagata K. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur J Biochem/FEBS. 1998;255(2):356–62. Epub 1998/08/26.

    Article  Google Scholar 

  43. Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, et al. Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem. 2006;281(42):31440–7. Epub 2006/08/25.

    Article  PubMed  Google Scholar 

  44. Fribley A, Wang CY. Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther. 2006;5(7):745–8. Epub 2006/07/25.

    Article  PubMed  Google Scholar 

  45. Li C, Li R, Grandis JR, Johnson DE. Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther. 2008;7(6):1647–55. Epub 2008/06/21.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–33. Epub 1999/05/27.

    Article  PubMed  Google Scholar 

  47. Oslowski CM, Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011;490:71–92.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Gething MJ, Sambrook J. Protein folding in the cell. Nature. 1992;355(6355):33–45. Epub 1992/01/02.

    Article  PubMed  Google Scholar 

  49. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002;110(10):1389–98. Epub 2002/11/20.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6. Epub 2011/11/26.

    Article  PubMed  Google Scholar 

  51. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89. Epub 2005/06/15.

    Article  PubMed  Google Scholar 

  52. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13(3):184–90. Epub 2011/03/03.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Zhang JX, Braakman I, Matlack KE, Helenius A. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol Biol Cell. 1997;8(10):1943–54. Epub 1997/12/31.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2(6):326–32.

    Article  PubMed  Google Scholar 

  55. Liu CY, Schroder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem. 2000;275(32):24881–5.

    Article  PubMed  Google Scholar 

  56. Fribley AM, Miller JR, Reist TE, Callaghan MU, Kaufman RJ. Large-scale analysis of UPR-mediated apoptosis in human cells. Methods Enzymol. 2011;491:57–71.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15(5):481–90. Epub 2013/04/30.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Schindler AJ, Schekman R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc Natl Acad Sci U S A. 2009;106(42):17775–80. Epub 2009/10/14.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10(11):3787–99. Epub 1999/11/17.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998;273(50):33741–9. Epub 1998/12/05.

    Article  PubMed  Google Scholar 

  61. Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M, et al. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J. 2001;355(Pt 1):19–28. Epub 2001/03/21.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 2000;20(18):6755–67. Epub 2000/08/25.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13(3):365–76. Epub 2007/09/04.

    Article  PubMed  Google Scholar 

  64. Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct. 2008;33(1):75–89. Epub 2008/03/25.

    Article  PubMed  Google Scholar 

  65. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J. 2002;366(Pt 2):585–94. Epub 2002/05/17.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol. 2004;167(3):445–56. Epub 2004/11/03.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2005;102(52):18773–84. Epub 2005/12/21.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003;23(21):7448–59. Epub 2003/10/16.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318(5852):944–9.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 2006;4(11):e374. Epub 2006/11/09.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7(6):1165–76. Epub 2001/06/30.

    Article  PubMed  Google Scholar 

  72. Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014;14(4):263–76. Epub 2014/03/25.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Dorner AJ, Wasley LC, Kaufman RJ. Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. Proc Natl Acad Sci U S A. 1990;87(19):7429–32. Epub 1990/10/01.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Shiu RP, Pouyssegur J, Pastan I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977;74(9):3840–4. Epub 1977/09/01.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Haas IG, Wabl M. Immunoglobulin heavy chain binding protein. Nature. 1983;306(5941):387–9. Epub 1983/11/24.

    Article  PubMed  Google Scholar 

  76. Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986;46(2):291–300. Epub 1986/07/18.

    Article  PubMed  Google Scholar 

  77. Hendershot LM. The ER, function BiP is a master regulator of ER function. Mount Sinai J Med New York. 2004;71(5):289–97. Epub 2004/11/16.

    Google Scholar 

  78. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92(3):351–66. Epub 1998/02/26.

    Article  PubMed  Google Scholar 

  79. Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A. 1991;88(7):2874–8. Epub 1991/04/01.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Chevet E, Jakob CA, Thomas DY, Bergeron JJ. Calnexin family members as modulators of genetic diseases. Semin Cell Dev Biol. 1999;10(5):473–80. Epub 1999/12/22.

    Article  PubMed  Google Scholar 

  81. Gething MJ. Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol. 1999;10(5):465–72. Epub 1999/12/22.

    Article  PubMed  Google Scholar 

  82. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2013;32(7):805–18. Epub 2012/04/18.

    Article  PubMed  Google Scholar 

  83. Xing X, Li Y, Liu H, Wang L, Sun L. Glucose regulated protein 78 (GRP78) is overexpressed in colorectal carcinoma and regulates colorectal carcinoma cell growth and apoptosis. Acta Histochem. 2011;113(8):777–82. Epub 2010/12/16.

    Article  PubMed  Google Scholar 

  84. Fu Y, Lee AS. Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol Ther. 2006;5(7):741–4. Epub 2006/07/25.

    Article  PubMed  Google Scholar 

  85. Jamora C, Dennert G, Lee AS. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci U S A. 1996;93(15):7690–4. Epub 1996/07/23.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Langer R, Feith M, Siewert JR, Wester HJ, Hoefler H. Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer. 2008;8:70. Epub 2008/03/12.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Chen X, Ding Y, Liu CG, Mikhail S, Yang CS. Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis. 2002;23(1):123–30. Epub 2002/01/05.

    Article  PubMed  Google Scholar 

  88. Slotta-Huspenina J, Wolff C, Drecoll E, Feith M, Bettstetter M, Malinowsky K, et al. A specific expression profile of heat-shock proteins and glucose-regulated proteins is associated with response to neoadjuvant chemotherapy in oesophageal adenocarcinomas. Br J Cancer. 2013;109(2):370–8. Epub 2013/07/11.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Slotta-Huspenina J, Berg D, Bauer K, Wolff C, Malinowsky K, Bauer L, et al. Evidence of prognostic relevant expression profiles of heat-shock proteins and glucose-regulated proteins in oesophageal adenocarcinomas. PLoS One. 2012;7(7):e41420. Epub 2012/08/23.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Chiu CC, Lin CY, Lee LY, Chen YJ, Lu YC, Wang HM, et al. Molecular chaperones as a common set of proteins that regulate the invasion phenotype of head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(14):4629–41. Epub 2011/06/07.

    Article  Google Scholar 

  91. Lin CY, Chen WH, Liao CT, Chen IH, Chiu CC, Wang HM, et al. Positive association of glucose-regulated protein 78 during oral cancer progression and the prognostic value in oral precancerous lesions. Head Neck. 2010;32(8):1028–39. Epub 2009/12/03.

    Article  PubMed  Google Scholar 

  92. Chiu CC, Lin CY, Lee LY, Chen YJ, Kuo TF, Chang JT, et al. Glucose-regulated protein 78 regulates multiple malignant phenotypes in head and neck cancer and may serve as a molecular target of therapeutic intervention. Mol Cancer Ther. 2008;7(9):2788–97. Epub 2008/09/16.

    Article  PubMed  Google Scholar 

  93. Lin CY, Lin TY, Wang HM, Huang SF, Fan KH, Liao CT, et al. GP96 is over-expressed in oral cavity cancer and is a poor prognostic indicator for patients receiving radiotherapy. Radiat Oncol. 2011;6:136. Epub 2011/10/14.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Visioli F, Wang Y, Alam GN, Ning Y, Rados PV, Nor JE, et al. Glucose-regulated protein 78 (Grp78) confers chemoresistance to tumor endothelial cells under acidic stress. PLoS One. 2014;9(6):e101053. Epub 2014/06/26.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Xia F, Xu JC, Zhang P, Zhang YY, Zhang QW, Chao ZH, et al. Glucose-regulated protein 78 and heparanase expression in oral squamous cell carcinoma: correlations and prognostic significance. World J Surg Oncol. 2014;12:121. Epub 2014/04/29.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67(8):3496–9. Epub 2007/04/19.

    Article  PubMed  Google Scholar 

  97. Wu MJ, Jan CI, Tsay YG, Yu YH, Huang CY, Lin SC, et al. Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling. Mol Cancer. 2010;9:283. Epub 2010/10/29.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Chiu CC, Lee LY, Li YC, Chen YJ, Lu YC, Li YL, et al. Grp78 as a therapeutic target for refractory head-neck cancer with CD24(−)CD44(+) stemness phenotype. Cancer Gene Ther. 2013;20(11):606–15. Epub 2013/11/10.

    Article  PubMed  Google Scholar 

  99. Huang TT, Chen JY, Tseng CE, Su YC, Ho HC, Lee MS, et al. Decreased GRP78 protein expression is a potential prognostic marker of oral squamous cell carcinoma in Taiwan. J Formos Med Assoc = Taiwan yi zhi. 2010;109(5):326–37. Epub 2010/05/26.

    Article  PubMed  Google Scholar 

  100. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med. 2006;6(1):45–54. Epub 2006/02/14.

    Article  PubMed  Google Scholar 

  101. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014;14(9):581–97. Epub 2014/08/26.

    Article  PubMed  Google Scholar 

  102. Thews O, Nowak M, Sauvant C, Gekle M. Hypoxia-induced extracellular acidosis increases p-glycoprotein activity and chemoresistance in tumors in vivo via p38 signaling pathway. Adv Exp Med Biol. 2011;701:115–22. Epub 2011/03/30.

    Article  PubMed  Google Scholar 

  103. Zhang L, Nosak C, Sollazzo P, Odisho T, Volchuk A. IRE1 inhibition perturbs the unfolded protein response in a pancreatic beta-cell line expressing mutant proinsulin, but does not sensitize the cells to apoptosis. BMC Cell Biol. 2014;15:29. Epub 2014/07/12.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D, Santo L, et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood. 2012;119(24):5772–81. Epub 2012/04/28.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Zhang H, Nakajima S, Kato H, Gu L, Yoshitomi T, Nagai K, et al. Selective, potent blockade of the IRE1 and ATF6 pathways by 4-phenylbutyric acid analogues. Br J Pharmacol. 2013;170(4):822–34. Epub 2013/07/23.

    Article  PubMed Central  PubMed  Google Scholar 

  106. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21(4):1249–59. Epub 2001/02/07.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Tang CH, Ranatunga S, Kriss CL, Cubitt CL, Tao J, Pinilla-Ibarz JA, et al. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest. 2014;124(6):2585–98. Epub 2014/05/09.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi H, et al. B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Int J Biol Sci. 2013;9(8):766–77.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Falchook GS, Naing A, Hong DS, Zinner R, Fu S, Piha-Paul SA, et al. Dual EGFR inhibition in combination with anti-VEGF treatment: a phase I clinical trial in non-small cell lung cancer. Oncotarget. 2013;4(1):118–27.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Rzymski T, Petry A, Kracun D, Riess F, Pike L, Harris AL, et al. The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene. 2012;31(31):3621–34.

    Article  PubMed  Google Scholar 

  111. Harisi R, Kenessey I, Olah JN, Timar F, Babo I, Pogany G, et al. Differential inhibition of single and cluster type tumor cell migration. Anticancer Res. 2009;29(8):2981–5.

    PubMed  Google Scholar 

  112. Jeney A, Kenessey I, Timar F, Olah J, Pogany G, Babo I, et al. Study of drugs against neoplastic metastasis. Magy Onkol. 2006;50(2):93–100. A tumorok attetkepzeset korlatozo hatoanyagok kutatasa.

    PubMed  Google Scholar 

  113. Tsuchiya E, Yukawa M, Ueno M, Kimura K, Takahashi H. A novel method of screening cell-cycle blockers as candidates for anti-tumor reagents using yeast as a screening tool. Biosci Biotechnol Biochem. 2010;74(2):411–4.

    Article  PubMed  Google Scholar 

  114. Habibi D, Ogloff N, Jalili RB, Yost A, Weng AP, Ghahary A, et al. Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs. 2012;30(4):1361–70. Epub 2011/06/17.

    Article  PubMed  Google Scholar 

  115. Gafiuc D, Weiss M, Mylonas I, Bruning A. Borrelidin has limited anti-cancer effects in bcl-2 overexpressing breast cancer and leukemia cells and reveals toxicity in non-malignant breast epithelial cells. J Appl Toxicol JAT. 2014;34(10):1109–13. Epub 2013/10/25.

    Article  PubMed  Google Scholar 

  116. Moss SJ, Carletti I, Olano C, Sheridan RM, Ward M, Math V, et al. Biosynthesis of the angiogenesis inhibitor borrelidin: directed biosynthesis of novel analogues. Chem Commun. 2006;22:2341–3.

    Article  Google Scholar 

  117. Zang Y, Thomas SM, Chan ET, Kirk CJ, Freilino ML, DeLancey HM, et al. Carfilzomib and ONX 0912 inhibit cell survival and tumor growth of head and neck cancer and their activities are enhanced by suppression of Mcl-1 or autophagy. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(20):5639–49.

    Article  Google Scholar 

  118. Zang Y, Thomas SM, Chan ET, Kirk CJ, Freilino ML, DeLancey HM, et al. The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4. Autophagy. 2012;8(12):1873–4.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Zang Y, Kirk CJ, Johnson DE. Carfilzomib and oprozomib synergize with histone deacetylase inhibitors in head and neck squamous cell carcinoma models of acquired resistance to proteasome inhibitors. Cancer Biol Ther. 2014;15(9):1142–52.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Setty AR, Sigal LH. Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin Arthritis Rheum. 2005;34(6):773–84.

    Article  PubMed  Google Scholar 

  121. Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol. 2012;227(5):2196–206. Epub 2011/08/26.

    Article  PubMed  Google Scholar 

  122. Zhu H, Yang W, He LJ, Ding WJ, Zheng L, Liao SD, et al. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells. PLoS One. 2012;7(12):e52333. Epub 2013/01/04.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Cha W, Park SW, Kwon TK, Hah JH, Sung MW. Endoplasmic reticulum stress response as a possible mechanism of cyclooxygenase-2-independent anticancer effect of celecoxib. Anticancer Res. 2014;34(4):1731–5.

    PubMed  Google Scholar 

  124. Huang KH, Kuo KL, Ho IL, Chang HC, Chuang YT, Lin WC, et al. Celecoxib-induced cytotoxic effect is potentiated by inhibition of autophagy in human urothelial carcinoma cells. PLoS One. 2013;8(12), e82034.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Du H, Li W, Wang Y, Chen S, Zhang Y. Celecoxib induces cell apoptosis coupled with up-regulation of the expression of VEGF by a mechanism involving ER stress in human colorectal cancer cells. Oncol Rep. 2011;26(2):495–502.

    PubMed  Google Scholar 

  126. Zheng M, Zhang Q, Joe Y, Lee BH, Ryu do G, Kwon KB, et al. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction. Int Immunopharmacol. 2013;15(3):517–23.

    Article  PubMed  Google Scholar 

  127. Ng AP, Chng WJ, Khan M. Curcumin sensitizes acute promyelocytic leukemia cells to unfolded protein response-induced apoptosis by blocking the loss of misfolded N-CoR protein. Mol Cancer Res MCR. 2011;9(7):878–88.

    Article  PubMed  Google Scholar 

  128. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119(5):1109–23.

    Article  PubMed Central  PubMed  Google Scholar 

  129. Lin YC, Wu MH, Wei TT, Lin YC, Huang WC, Huang LY, et al. Metformin sensitizes anticancer effect of dasatinib in head and neck squamous cell carcinoma cells through AMPK-dependent ER stress. Oncotarget. 2014;5(1):298–308.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Weng JR, Bai LY, Chiu CF, Wang YC, Tsai MH. The dietary phytochemical 3,3'-diindolylmethane induces G2/M arrest and apoptosis in oral squamous cell carcinoma by modulating Akt-NF-kappaB, MAPK, and p53 signaling. Chem Biol Interact. 2012;195(3):224–30.

    Article  PubMed  Google Scholar 

  131. Abdelrahim M, Newman K, Vanderlaag K, Samudio I, Safe S. 3,3'-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis. 2006;27(4):717–28.

    Article  PubMed  Google Scholar 

  132. Kandala PK, Srivastava SK. Regulation of macroautophagy in ovarian cancer cells in vitro and in vivo by controlling glucose regulatory protein 78 and AMPK. Oncotarget. 2012;3(4):435–49.

    Article  PubMed Central  PubMed  Google Scholar 

  133. Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, et al. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc. 2011;133(16):6235–42.

    Article  PubMed  Google Scholar 

  134. Fribley AM, Miller JR, Callaghan MU, Cai P, Narula N, Kaufman RJ. N-nitrosyldiethylamine induces oxidative stress and apoptosis in HNSCC cells. [Abstract]. In press 2009. https://iadr.confex.com/iadr/2009miami/webprogram/Paper119938.html.

  135. Cen D, Brayton D, Shahandeh B, Meyskens Jr FL, Farmer PJ. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J Med Chem. 2004;47(27):6914–20.

    Article  PubMed  Google Scholar 

  136. Lin SY, Lai WW, Ho CC, Yu FS, Chen GW, Yang JS, et al. Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways. Anticancer Res. 2009;29(1):327–35.

    PubMed  Google Scholar 

  137. Xie MJ, Ma YH, Miao L, Wang Y, Wang HZ, Xing YY, et al. Emodin-provoked oxidative stress induces apoptosis in human colon cancer HCT116 cells through a p53-mitochondrial apoptotic pathway. Asian Pac J Cancer Prev APJCP. 2014;15(13):5201–5.

    Article  PubMed  Google Scholar 

  138. Baumeister P, Dong D, Fu Y, Lee AS. Transcriptional induction of GRP78/BiP by histone deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis. Mol Cancer Ther. 2009;8(5):1086–94.

    Article  PubMed Central  PubMed  Google Scholar 

  139. Fan L, Hu L, Yang B, Fang X, Gao Z, Li W, et al. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium. Toxicol Appl Pharmacol. 2014;278(1):45–52.

    Article  PubMed  Google Scholar 

  140. Wang YC, Kulp SK, Wang D, Yang CC, Sargeant AM, Hung JH, et al. Targeting endoplasmic reticulum stress and Akt with OSU-03012 and gefitinib or erlotinib to overcome resistance to epidermal growth factor receptor inhibitors. Cancer Res. 2008;68(8):2820–30.

    Article  PubMed Central  PubMed  Google Scholar 

  141. Hseu YC, Lee MS, Wu CR, Cho HJ, Lin KY, Lai GH, et al. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway. J Agric Food Chem. 2012;60(9):2385–97.

    Article  PubMed  Google Scholar 

  142. Ji T, Lin C, Krill LS, Eskander R, Guo Y, Zi X, et al. Flavokawain B, a kava chalcone, inhibits growth of human osteosarcoma cells through G2/M cell cycle arrest and apoptosis. Mol Cancer. 2013;12:55.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Pan Y, Xiao J, Liang G, Wang M, Wang D, Wang S, et al. A new curcumin analogue exhibits enhanced antitumor activity in nasopharyngeal carcinoma. Oncol Rep. 2013;30(1):239–45.

    PubMed  Google Scholar 

  144. Xiao J, Chu Y, Hu K, Wan J, Huang Y, Jiang C, et al. Synthesis and biological analysis of a new curcumin analogue for enhanced anti-tumor activity in HepG 2 cells. Oncol Rep. 2010;23(5):1435–41.

    PubMed  Google Scholar 

  145. Xiao J, Tan Y, Pan Y, Liang G, Qu C, Zhang X, et al. A new cyclooxygenase-2 inhibitor, (1E,4E)-1,5-bis(2-bromophenyl)penta-1,4-dien-3-one (GL63) suppresses cyclooxygenase-2 gene expression in human lung epithelial cancer cells: coupled mRNA stabilization and posttranscriptional inhibition. Biol Pharm Bull. 2010;33(7):1170–5.

    Article  PubMed  Google Scholar 

  146. Lu CC, Yang JS, Chiang JH, Hour MJ, Lin KL, Lee TH, et al. Cell death caused by quinazolinone HMJ-38 challenge in oral carcinoma CAL 27 cells: dissections of endoplasmic reticulum stress, mitochondrial dysfunction and tumor xenografts. Biochim Biophys Acta. 2014;1840(7):2310–20.

    Article  PubMed  Google Scholar 

  147. Dasmahapatra G, Patel H, Dent P, Fisher RI, Friedberg J, Grant S. The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. Br J Haematol. 2013;161(1):43–56.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Du Y, Wang K, Fang H, Li J, Xiao D, Zheng P, et al. Coordination of intrinsic, extrinsic, and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia. Blood. 2006;107(4):1582–90.

    Article  PubMed  Google Scholar 

  149. Chauhan D, Tian Z, Zhou B, Kuhn D, Orlowski R, Raje N, et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(16):5311–21.

    Article  Google Scholar 

  150. Li L, Xu Y, Wang B. Liriodenine induces the apoptosis of human laryngocarcinoma cells via the upregulation of p53 expression. Oncol Lett. 2015;9(3):1121–7.

    PubMed Central  PubMed  Google Scholar 

  151. Nordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des Devel Ther. 2015;9:1437–48.

    PubMed Central  PubMed  Google Scholar 

  152. Flaherty DP, Golden JE, Liu C, Hedrick M, Gosalia P, Li Y, et al. Selective small molecule activator of the apoptotic arm of the UPR. Bethesda: Probe Reports from the NIH Molecular Libraries Program; 2010.

    Google Scholar 

  153. Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, Abu-Asab MS, et al. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(17):5183–94.

    Article  Google Scholar 

  154. Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale. 2015;7(2):736–46.

    Article  PubMed  Google Scholar 

  155. Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S, Asa D, et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol. 2013;9(9):548–56.

    Article  PubMed  Google Scholar 

  156. Boussabbeh M, Ben Salem I, Prola A, Guilbert A, Bacha H, Abid-Essefi S, et al. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicol Sci Off J Soc Toxicol. 2015.

    Google Scholar 

  157. Yan J, Zhong N, Liu G, Chen K, Liu X, Su L, et al. Usp9x- and Noxa-mediated Mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells. Cell Death Dis. 2014;5:e1316.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Kuznetsov JN, Leclerc GJ, Leclerc GM, Barredo JC. AMPK and Akt determine apoptotic cell death following perturbations of one-carbon metabolism by regulating ER stress in acute lymphoblastic leukemia. Mol Cancer Ther. 2011;10(3):437–47.

    Article  PubMed Central  PubMed  Google Scholar 

  159. Liu H, Zhao S, Zhang Y, Wu J, Peng H, Fan J, et al. Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to polydatin-induced apoptosis in human nasopharyngeal carcinoma CNE cells. J Cell Biochem. 2011;112(12):3695–703.

    Article  PubMed  Google Scholar 

  160. Davis AL, Qiao S, Lesson JL, Rojo de la Vega M, Park SL, Seanez CM, et al. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells. J Biol Chem. 2015;290(3):1623–38.

    Article  PubMed Central  PubMed  Google Scholar 

  161. Chow SE, Kao CH, Liu YT, Cheng ML, Yang YW, Huang YK, et al. Resveratrol induced ER expansion and ER caspase-mediated apoptosis in human nasopharyngeal carcinoma cells. Apoptosis Int J Program Cell Death. 2014;19(3):527–41.

    Article  Google Scholar 

  162. Liu BQ, Gao YY, Niu XF, Xie JS, Meng X, Guan Y, et al. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation. Biochem Biophys Res Commun. 2010;391(1):778–82.

    Article  PubMed  Google Scholar 

  163. Lin ML, Chen SS, Lu YC, Liang RY, Ho YT, Yang CY, et al. Rhein induces apoptosis through induction of endoplasmic reticulum stress and Ca2 + −dependent mitochondrial death pathway in human nasopharyngeal carcinoma cells. Anticancer Res. 2007;27(5A):3313–22.

    PubMed  Google Scholar 

  164. Yu L, Xiang H, Fan J, Wang D, Yang F, Guo N, et al. Global transcriptional response of staphylococcus aureus to rhein, a natural plant product. J Biotechnol. 2008;135(3):304–8.

    Article  PubMed  Google Scholar 

  165. Shen S, Zhang Y, Zhang R, Gong X. Sarsasapogenin induces apoptosis via the reactive oxygen species-mediated mitochondrial pathway and ER stress pathway in HeLa cells. Biochem Biophys Res Commun. 2013;441(2):519–24.

    Article  PubMed  Google Scholar 

  166. Yi P, Higa A, Taouji S, Bexiga MG, Marza E, Arma D, et al. Sorafenib-mediated targeting of the AAA(+) ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death. Mol Cancer Ther. 2012;11(12):2610–20.

    Article  PubMed  Google Scholar 

  167. Beck D, Niessner H, Smalley KS, Flaherty K, Paraiso KH, Busch C, et al. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal. 2013;6(260):ra7.

    PubMed Central  PubMed  Google Scholar 

  168. Wang G, Yang ZQ, Zhang K. Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. Am J Transl Res. 2010;2(1):65–74. Epub 2010/02/26.

    PubMed Central  PubMed  Google Scholar 

  169. Wang Y, Alam GN, Ning Y, Visioli F, Dong Z, Nor JE, et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res. 2012;72(20):5396–406. Epub 2012/08/24.

    Article  PubMed Central  PubMed  Google Scholar 

  170. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D, Santo L, et al. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood. 2012;119(24):5772–81. doi: 10.1182/blood-2011-07-366633. Epub 2012 Apr 26.

    Google Scholar 

  171. Gray MJ, Mhawech-Fauceglia P, Yoo E, Yang W, Wu E, Lee AS, et al. AKT inhibition mitigates GRP78 (glucose-regulated protein) expression and contribution to chemoresistance in endometrial cancers. Int J Cancer J Int du Cancer. 2013;133(1):21–30. Epub 2013/01/03.

    Article  Google Scholar 

  172. Zhai L, Kita K, Wano C, Wu Y, Sugaya S, Suzuki N. Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells. Exp Cell Res. 2005;305(2):244–52. Epub 2005/04/09.

    Article  PubMed  Google Scholar 

  173. Chatterjee S, Hirota H, Belfi CA, Berger SJ, Berger NA. Hypersensitivity to DNA cross-linking agents associated with up-regulation of glucose-regulated stress protein GRP78. Cancer Res. 1997;57(22):5112–6. Epub 1997/11/26.

    PubMed  Google Scholar 

  174. Belfi CA, Chatterjee S, Gosky DM, Berger SJ, Berger NA. Increased sensitivity of human colon cancer cells to DNA cross-linking agents after GRP78 up-regulation. Biochem Biophys Res Commun. 1999;257(2):361–8. Epub 1999/04/13.

    Article  PubMed  Google Scholar 

  175. Suzuki M, Endo M, Shinohara F, Echigo S, Rikiishi H. Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 2009;64(6):1115–22. Epub 2009/03/13.

    Article  PubMed  Google Scholar 

  176. Harvey AL, Cree IA. High-throughput screening of natural products for cancer therapy. Planta Med. 2010;76(11):1080–6.

    Article  PubMed  Google Scholar 

  177. Shamas-Din A, Schimmer AD. Drug discovery in academia. Exp Hematol. 2015. Epub 2015/04/29.

    Google Scholar 

  178. Dahlin JL, Inglese J, Walters MA. Mitigating risk in academic preclinical drug discovery. Nat Rev Drug Discov. 2015;14(4):279–94. Epub 2015/04/02.

    Article  PubMed  Google Scholar 

  179. Jordan AM, Waddell ID, Ogilvie DJ. Rethinking 'academic' drug discovery: the Manchester Institute perspective. Drug Discov Today. 2015;20(5):525–35. Epub 2014/12/30.

    Article  PubMed  Google Scholar 

  180. Jacob RT, Larsen MJ, Larsen SD, Kirchhoff PD, Sherman DH, Neubig RR. MScreen: an integrated compound management and high-throughput screening data storage and analysis system. J Biomol Screen. 2012;17(8):1080–7. Epub 2012/06/19.

    Article  PubMed Central  PubMed  Google Scholar 

  181. Larsen MJ, Larsen SD, Fribley A, Grembecka J, Homan K, Mapp A, et al. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen. 2014;17(3):210–30.

    Article  PubMed Central  PubMed  Google Scholar 

  182. Sidhu A, Miller JR, Tripathi A, Garshott DM, Brownell AL, Chiego DJ, et al. Borrelidin Induces the Unfolded Protein Response in Oral Cancer Cells and Chop-Dependent Apoptosis. ACS Med Chem Lett. 2015;6(11):1122–7. doi: 10.1021/acsmedchemlett.5b00133. eCollection 2015 Nov 12. PMID: 26617965.

    Google Scholar 

  183. Cruz PG, Fribley AM, Miller JR, Larsen MJ, Schultz PJ, Jacob RT, et al. Novel Lobophorins Inhibit Oral Cancer Cell Growth and Induce Atf4- and Chop-Dependent Cell Death in Murine Fibroblasts. ACS Med Chem Lett. 2015;6(8):877–81. doi: 10.1021/acsmedchemlett.5b00127. eCollection 2015 Aug 13. PMID: 26288688.

    Google Scholar 

  184. Wang GS. Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol. 1989;26(2):147–62. Epub 1989/09/01.

    Article  PubMed  Google Scholar 

  185. Buck M, Farr AC, Schnitzer RJ. The anti-borrelia effect of borrelidin. Trans N Y Acad Sci. 1949;11(6):207–10. Epub 1949/04/01.

    Article  PubMed  Google Scholar 

  186. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670–95. Epub 2013/02/23.

    Article  PubMed Central  PubMed  Google Scholar 

  187. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111–29.

    Article  PubMed  Google Scholar 

  188. Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, et al. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci U S A. 2011;108(31):12943–8. Epub 2011/07/20.

    Article  PubMed Central  PubMed  Google Scholar 

  189. Butler MS, Robertson AA, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep. 2014;31(11):1612–61. Epub 2014/09/11.

    Article  PubMed  Google Scholar 

  190. El-Menshawi BS, Fayad W, Mahmoud K, El-Hallouty SM, El-Manawaty M, Olofsson MH, et al. Screening of natural products for therapeutic activity against solid tumors. Indian J Exp Biol. 2010;48(3):258–64.

    PubMed  Google Scholar 

  191. Warner BM, Casto BC, Knobloch TJ, Accurso BT, Weghorst CM. Chemoprevention of oral cancer by topical application of black raspberries on high at-risk mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(6):674–83. Epub 2014/12/03.

    Article  PubMed Central  PubMed  Google Scholar 

  192. Casto BC, Knobloch TJ, Galioto RL, Yu Z, Accurso BT, Warner BM. Chemoprevention of oral cancer by lyophilized strawberries. Anticancer Res. 2013;33(11):4757–66. Epub 2013/11/14.

    PubMed Central  PubMed  Google Scholar 

  193. Sheikh S, Gupta D, Pallagatti S, Singla I, Gupta R, Goel V. Role of topical drugs in treatment of oral mucosal diseases. A literature review. N Y State Dent J. 2013;79(6):58–64. Epub 2014/03/08.

    PubMed  Google Scholar 

  194. Holpuch AS, Desai KG, Schwendeman SP, Mallery SR. Optimizing therapeutic efficacy of chemopreventive agents: a critical review of delivery strategies in oral cancer chemoprevention clinical trials. J Carcinog. 2011;10:23. Epub 2011/10/21.

    Article  PubMed Central  PubMed  Google Scholar 

  195. Birudaraj R, Mahalingam R, Li X, Jasti BR. Advances in buccal drug delivery. Crit Rev Ther Drug Carrier Syst. 2005;22(3):295–330. Epub 2005/05/18.

    Article  PubMed  Google Scholar 

  196. Saba NF, Haigentz Jr M, Vermorken JB, Strojan P, Bossi P, Rinaldo A, et al. Prevention of head and neck squamous cell carcinoma: removing the “chemo” from “chemoprevention”. Oral Oncol. 2015;51(2):112–8. Epub 2014/12/02.

    Article  PubMed  Google Scholar 

  197. Drew DP, Krichau N, Reichwald K, Simonsen HT. Guaianolides in apiaceae: perspectives on pharmacology and biosynthesis. Phytochem Rev. 2009;8(3):581–99.

    Article  Google Scholar 

  198. Tashiro E, Hironiwa N, Kitagawa M, Futamura Y, Suzuki S, Nishio M, et al. Trierixin, a novel inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. 1. Taxonomy, fermentation, isolation and biological activities. J Antibiot. 2007;60(9):547–53. Epub 2007/10/06.

    Article  PubMed  Google Scholar 

  199. Futamura Y, Tashiro E, Hironiwa N, Kohno J, Nishio M, Shindo K, et al. Trierixin, a novel inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. II. structure elucidation. J Antibiot. 2007;60(9):582–5. Epub 2007/10/06.

    Article  PubMed  Google Scholar 

  200. Park HR, Chijiwa S, Furihata K, Hayakawa Y, Shin-Ya K. Relative and absolute configuration of versipelostatin, a down-regulator of molecular chaperone GRP78 expression. Org Lett. 2007;9(8):1457–60. Epub 2007/03/14.

    Article  PubMed  Google Scholar 

  201. Zhao P, Ueda JY, Kozone I, Chijiwa S, Takagi M, Kudo F, et al. New glycosylated derivatives of versipelostatin, the GRP78/Bip molecular chaperone down-regulator, from Streptomyces versipellis 4083-SVS6. Org Biomol Chem. 2009;7(7):1454–60. Epub 2009/03/21.

    Article  PubMed  Google Scholar 

  202. Matsuo J, Tsukumo Y, Sakurai J, Tsukahara S, Park HR, Shin-ya K, et al. Preventing the unfolded protein response via aberrant activation of 4E-binding protein 1 by versipelostatin. Cancer Sci. 2009;100(2):327–33. Epub 2008/12/11.

    Article  PubMed  Google Scholar 

  203. Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, et al. Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst. 2004;96(17):1300–10. Epub 2004/09/02.

    Article  PubMed  Google Scholar 

  204. Berger J, Jampolsky LM, Goldberg MW. Borrelidin, a new antibiotic with antiborrelia activity and penicillin enhancement properties. Arch Biochem. 1949;22(3):476–8. Epub 1949/07/01.

    PubMed  Google Scholar 

  205. Hutter R, Poralla K, Zachau HG, Zahner H. Metabolic products of microorganisms. 5l. On the mechanism of action of borrelidin-inhibition of the threonine incorporation in sRNA. Biochem Z. 1966;344(2):190–6. Epub 1966/03/28. Stoffwechselprodukte von Mikroorganismen. 51. Uber die Wirkungsweise von Borrelidin-Hemmung des Threonineinbaus in sRNA.

    PubMed  Google Scholar 

  206. Azcarate IG, Marin-Garcia P, Camacho N, Perez-Benavente S, Puyet A, Diez A, et al. Insights into the preclinical treatment of blood-stage malaria by the antibiotic borrelidin. Br J Pharmacol. 2013;169(3):645–58. Epub 2013/03/16.

    Article  PubMed Central  PubMed  Google Scholar 

  207. Novoa EM, Camacho N, Tor A, Wilkinson B, Moss S, Marin-Garcia P, et al. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo. Proc Natl Acad Sci U S A. 2014;111(51):E5508–17. Epub 2014/12/10.

    Article  PubMed Central  PubMed  Google Scholar 

  208. Ibba M, Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000;69:617–50. Epub 2000/08/31.

    Article  PubMed  Google Scholar 

  209. Ibba M, Curnow AW, Soll D. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci. 1997;22(2):39–42. Epub 1997/02/01.

    Article  PubMed  Google Scholar 

  210. Schulze CJ, Bray WM, Loganzo F, Lam MH, Szal T, Villalobos A, et al. Borrelidin B: isolation, biological activity, and implications for nitrile biosynthesis. J Nat Prod. 2014;77(11):2570–4. Epub 2014/11/14.

    Article  PubMed  Google Scholar 

  211. Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CF, Turner KE, et al. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int J Parasitol Drugs Drug Resist. 2014;4(1):1–13. Epub 2014/03/07.

    Article  PubMed Central  PubMed  Google Scholar 

  212. Nakama T, Nureki O, Yokoyama S. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem. 2001;276(50):47387–93. Epub 2001/10/05.

    Article  PubMed  Google Scholar 

  213. Silvian LF, Wang J, Steitz TA. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science. 1999;285(5430):1074–7. Epub 1999/08/14.

    Article  PubMed  Google Scholar 

  214. Van de Vijver P, Ostrowski T, Sproat B, Goebels J, Rutgeerts O, Van Aerschot A, et al. Aminoacyl-tRNA synthetase inhibitors as potent and synergistic immunosuppressants. J Med Chem. 2008;51(10):3020–9. Epub 2008/04/29.

    Article  PubMed  Google Scholar 

  215. Teng M, Hilgers MT, Cunningham ML, Borchardt A, Locke JB, Abraham S, et al. Identification of bacteria-selective threonyl-tRNA synthetase substrate inhibitors by structure-based design. J Med Chem. 2013;56(4):1748–60. Epub 2013/02/01.

    Article  PubMed  Google Scholar 

  216. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29–40. Epub 2006/12/13.

    Article  PubMed  Google Scholar 

  217. Muguruma H, Yano S, Kakiuchi S, Uehara H, Kawatani M, Osada H, et al. Reveromycin A inhibits osteolytic bone metastasis of small-cell lung cancer cells, SBC-5, through an antiosteoclastic activity. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(24 Pt 1):8822–8. Epub 2005/12/20.

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript and research was supported by DE019678 and the Children’s Research Foundation of Michigan (A.M.F.), the Hyundai Hope on Wheels and the Detroit Country Day Men’s Lacrosse Team (A.M.F. and M.U.C), a Centralized Otolaryngology Research Efforts (CORE) grant (P.S.O. and A.M.F), and the Department of Otolaryngology, Wayne State University (D.M.B and P.O.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Fribley PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garshott, D.M. et al. (2016). The Unfolded Protein Response as a Therapeutic Target for Head and Neck Squamous Cell Carcinoma. In: M. Fribley, A. (eds) Targeting Oral Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-27647-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27647-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27645-8

  • Online ISBN: 978-3-319-27647-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics