Skip to main content

Turbulence–Radiation Interactions in Atmospheric Pressure Turbulent Flames

  • Chapter
  • First Online:
Radiative Heat Transfer in Turbulent Combustion Systems

Abstract

In this chapter the influence of radiation, as well as its interactions with turbulence, on atmospheric pressure turbulent flames is discussed. First laboratory-scale nonluminous jet diffusion flames are presented, and calculations are compared against experimental data. Special attention is given to how radiation influences flame structure, and what additional effects are due to turbulence interactions. This is followed by how radiation interacts with artificial, scaled-up flames. Similarly, radiation and TRI in small as well as scaled luminous diffusion flames and pool fires are presented. Finally, the influence of radiation on pulverized coal and oxy-fuel systems is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Mazumder, M.F. Modest, Turbulence–radiation interactions in nonreactive flow of combustion gases. J. Heat Transf. 121, 726–729 (1999)

    Article  Google Scholar 

  2. P.J. Foster, Relation of time-mean transmission of turbulent flames to optical depth. J. Inst. Fuel 42(340), 179 (1969)

    Google Scholar 

  3. W. Krebs, R. Koch, H.J. Bauer, R. Kneer, S. Wittig, Effect of turbulence on radiative heat transfer inside a model combustor, in Proceedings of Eurotherm Seminar No. 37—Heat Transfer in Radiating and Combusting Systems 2 (1994), pp. 349–362

    Google Scholar 

  4. S.J. Fischer, B. Hardoiun-Duparc, W.L. Grosshandler, The structure and radiation of an ethanol pool fire. Combust. Flame 70, 291–306 (1987)

    Article  Google Scholar 

  5. S.M. Jeng, M.C. Lai, G.M. Faeth, Nonluminous radiation in turbulent buoyant axisymmetric flames. Combust. Sci. Technol. 40, 41–53 (1984)

    Article  Google Scholar 

  6. J.P. Gore, G.M. Faeth, Structure and spectral radiation properties of turbulent ethylene/air diffusion flames, in Proceedings of the Twenty-First Symposium (International) on Combustion (1986), pp. 1521–1531

    Google Scholar 

  7. J.P. Gore, S.M. Jeng, G.M. Faeth, Spectral and total radiation properties of turbulent carbon monoxide/air diffusion flames. AIAA J. 25(2), 339–345 (1987)

    Article  Google Scholar 

  8. J.P. Gore, S.M. Jeng, G.M. Faeth, Spectral and total radiation properties of turbulent hydrogen/air diffusion flames. J. Heat Transf. 109, 165–171 (1987)

    Article  Google Scholar 

  9. J.P. Gore, G.M. Faeth, Structure and spectral radiation properties of luminous acetylene/air diffusion flames. J. Heat Transf. 110, 173–181 (1988)

    Article  Google Scholar 

  10. M.E. Kounalakis, J.P. Gore, G.M. Faeth, Mean and fluctuating radiation properties of nonpremixed turbulent carbon monoxide/air flames. J. Heat Transf. 111, 1021–1030 (1989)

    Article  Google Scholar 

  11. Y. Zheng, R.S. Barlow, J.P. Gore, Measurements and calculations of spectral radiation intensities for turbulent non-premixed and partially premixed flames. J. Heat Transf. 125, 678–686 (2003)

    Article  Google Scholar 

  12. Y. Zheng, J.P. Gore, Measurements and inverse calculations of spectral radiation intensities of a turbulent ethylene/air jet flame, in Thirtieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 2005), pp. 727–734

    Google Scholar 

  13. P.J. Coelho, Numerical simulation of the interaction between turbulence and radiation in reactive flows. Progr. Energy Combust. Sci. 33, 311–383 (2007)

    Article  Google Scholar 

  14. A.R. Masri, R.W. Bilger, R.W. Dibble, Turbulent nonpremixed flames of methane near extinction: mean structure from raman measurements. Combust. Flame 71, 245–266 (1988)

    Article  Google Scholar 

  15. A.R. Masri, R.W. Dibble, R.S. Barlow, The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Progr. Energy Combust. Sci. 22, 307–362 (1996)

    Article  Google Scholar 

  16. R.S. Barlow, J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  17. Combustion Research Facility, Sandia National Laboratories, in International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. http://www.sandia.gov/TNF/radiation.html

  18. Y. Zheng, R.S. Barlow, J.P. Gore, Spectral radiation properties of partially premixed turbulent flames. J. Heat Transf. 125, 1065–1073 (2003)

    Article  Google Scholar 

  19. Y. Zheng, R.S. Barlow, J.P. Gore, Measurements and calculations of spectral radiation intensities for turbulent non-premixed and partially premixed flames. J. Heat Transf. 125, 678–686 (2003)

    Article  Google Scholar 

  20. G. Li, M.F. Modest, Application of composition PDF methods in the investigation of turbulence–radiation interactions. J. Quant. Spectrosc. Radiat. Transf. 73, 461–472 (2002)

    Article  Google Scholar 

  21. G. Li, M.F. Modest, Importance of turbulence–radiation interactions in turbulent diffusion jet flames. J. Heat Transf. 125, 831–838 (2003)

    Article  Google Scholar 

  22. G. Li, M.F. Modest, Numerical simulation of turbulence–radiation interactions in turbulent reacting flows, in Modelling and Simulation of Turbulent Heat Transfer, Chap. 3, ed. by B. Sundeń, M. Faghri, (WIT, Southampton, 2005), pp. 77–112

    Google Scholar 

  23. P.J. Coelho, O.J. Teerling, D. Roekaerts, Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame 133, 75–91 (2003)

    Article  Google Scholar 

  24. P.J. Coelho, Detailed numerical simulation of radiative transfer in a nonluminous turbulent jet diffusion flame. Combust. Flame 136, 481–492 (2004)

    Article  Google Scholar 

  25. A. Wang, M.F. Modest, D.C. Haworth, L. Wang, Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames. J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008)

    Article  Google Scholar 

  26. A. Gupta, Large-eddy simulation of turbulent flames with radiation heat transfer. Ph.D. thesis, The Pennsylvania State University, University Park, 2011

    Google Scholar 

  27. G. Pal, A. Gupta, M.F. Modest, D.C. Haworth, Comparison of accuracy and computational expense of radiation models in simulation of nonpremixed turbulent jet flames. Combust. Flame 162, 2487–2495 (2015)

    Article  Google Scholar 

  28. Fluent, FLUENT 6.0 UDF Manual (Fluent Inc., New Hampshire, 2001)

    Google Scholar 

  29. STAR-CD Computational Fluid Dynamics Software, Version 6 (CD-adapco, New York, 2001)

    Google Scholar 

  30. B. Yang, S.B. Pope, An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combust. Flame 112, 16–32 (1998)

    Article  Google Scholar 

  31. S.R. Turns, An Introduction to Combustion: Concepts and Applications, 2nd edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  32. H. Jasak, A. Jemcov, Z. Tukovic, OpenFOAM: a C++ library for complex physics simulations, in International Workshop on Coupled Methods in Numerical Dynamics (IUC, Dubrovnik, 2007), pp. 1–20

    Google Scholar 

  33. A. Gupta, D.C. Haworth, M.F. Modest, Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames. Proc. Combust. Inst. 34, 1281–1288 (2013)

    Article  Google Scholar 

  34. B.R. Adams, P.J. Smith, Modeling effects of soot and turbulence–radiation coupling on radiative transfer in turbulent gaseous combustion. Combust. Sci. Technol. 109, 121 (1995)

    Article  Google Scholar 

  35. L. Tessé, F. Dupoirieux, J. Taine, Monte Carlo modeling of radiative transfer in a turbulent sooty flame. Int. J. Heat Mass Transf. 47, 555–572 (2004)

    Article  MATH  Google Scholar 

  36. A. Coppalle, D. Joyeux, Temperature and soot volume fraction in turbulent diffusion flames: measurements of mean and fluctuating values. Combust. Flame 96, 275–285 (1994)

    Article  Google Scholar 

  37. A. Soufiani, J. Taine, High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-k model for H2O and CO2. Int. J. Heat Mass Transf. 40(4), 987–991 (1997)

    Article  Google Scholar 

  38. G. Pal, M.F. Modest, A multi-scale full-spectrum k-distribution method for radiative transfer in nonhomogeneous gas–soot mixture with wall emission. Comput. Therm. Sci. 1, 137–158 (2009)

    Article  Google Scholar 

  39. R.S. Mehta, D.C. Haworth, M.F. Modest, Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames. Combust. Flame 157, 982–994 (2010)

    Article  Google Scholar 

  40. R.S. Mehta, M.F. Modest, D.C. Haworth, Radiation characteristics and turbulence–radiation interactions in sooting turbulent jet flames. Combust. Theory Model 14(1), 105–124 (2010)

    Article  MATH  Google Scholar 

  41. R.S. Mehta, D.C. Haworth, M.F. Modest, An assessment of gas-phase thermochemistry and soot models for laminar atmospheric-pressure ethylene–air flames. Proc. Combust. Inst. 32, 1327–1334 (2009)

    Article  Google Scholar 

  42. C.K. Law, Comprehensive description of chemistry in combustion modeling. Combust. Sci. Technol. 177, 845–870 (2005)

    Article  Google Scholar 

  43. H. Chang, T.T. Charalampopoulos, Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. (Lond.) A 430(1880), 577–591 (1990)

    Google Scholar 

  44. J.H. Kent, D. Honnery, Modeling sooting turbulent jet flames using an extended flamelet technique. Combust. Sci. Technol. 54, 383–397 (1987)

    Article  Google Scholar 

  45. N.E. Endrud, Soot, Radiation and pollutant emissions in oxygen-enhanced turbulent jet flames. Master’s thesis, The Pennsylvania State University, University Park, 2000

    Google Scholar 

  46. A. Wang, Investigation of turbulence–radiation interactions in turbulent flames using a hybrid FVM/particle-photon Monte Carlo approach. Ph.D. thesis, The Pennsylvania State University, University Park, 2007

    Google Scholar 

  47. S.-Y. Lee, Detailed studies of spatial soot formation processes in turbulent ethylene jet flames. Ph.D. thesis, The Pennsylvania State University, University Park, 1998

    Google Scholar 

  48. M. Klassen, Y.R. Sivathanu, J.P. Gore, Simultaneous emission absorption-measurements in toluene-fueled pool flames—mean and rms properties. Combust. Flame 90, 34–44 (1992)

    Article  Google Scholar 

  49. M. Klassen, J.P. Gore, Temperature and soot volume fraction statistics in toluene-fired pool fires. Combust. Flame 93, 270–278 (1993)

    Article  Google Scholar 

  50. A.Y. Snegirev, Statistical modeling of thermal radiation transfer in buoyant turbulent diffusion flames. Combust. Flame 136, 51–71 (2004)

    Article  Google Scholar 

  51. E. Gengembre, P. Cambray, D. Karmed, J. Belet, Turbulent diffusion flames with large buoyancy effects. Combust. Sci. Technol. 41, 55–67 (1984)

    Article  Google Scholar 

  52. J.M. Souil, P. Joulain, E. Gengembre, Experimental and theoretical study of thermal radiation from turbulent diffusion flames to vertical target surfaces. Combust. Sci. Technol. 41, 69–81 (1984)

    Article  Google Scholar 

  53. T.F. Smith, Z.F. Shen, J.N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transf. 104, 602–608 (1982)

    Article  Google Scholar 

  54. J.L. Consalvi, Influence of turbulence–radiation interactions in laboratory-scale methane pool fires. Int. J. Therm. Sci. 60, 122–130 (2012)

    Article  Google Scholar 

  55. J.L. Consalvi, R. Demarco, A. Fuentes, Modelling thermal radiation in buoyant turbulent diffusion flames. Combust. Theory Model 16(5), 817–841 (2013)

    Article  Google Scholar 

  56. J.L. Consalvi, R. Demarco, A. Fuentes, S. Melis, J.P. Vantelon, On the modeling of radiative heat transfer in laboratory-scale pool fires. Fire Saf. J. 60, 73–81 (2013)

    Article  Google Scholar 

  57. S. Hostikka, K.B. McGrattan, A. Hamins, Numerical modeling of pool fires using LES and finite volume method for radiation, in Proceedings of the Seventh International Symposium on Fire Safety Science, ed. by D.D. Evans (International Association for Fire Safety Sciences, 2003), pp. 383–394

    Google Scholar 

  58. J. Cai, M. Handa, M.F. Modest, Eulerian–Eulerian multi-fluid methods for pulverized coal flames with nongray radiation. Combust. Flame 162, 1550–1565 (2015)

    Article  Google Scholar 

  59. J. Cai, X. Zhao, M.F. Modest, D.C. Haworth, Nongray radiation modelings in Eulerian–Lagrangian methods for pulverized coal flames, in Paper No. TFESC-12950, Proceedings of the 1st Thermal and Fluids Engineering Summer Conference, TFESC-1, New York (2015)

    Google Scholar 

  60. M. Syamlal, W. Rodgers, T. O’Brien, MFIX documentation: theory guide. Technical Note, DOE/METC-94/1004 (1993)

    Google Scholar 

  61. S.M. Hwang, R. Kurose, F. Akamatsu, H. Tsuji, H. Makino, M. Katsuki, Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame. Energy Fuel 19, 382–392 (2005)

    Article  Google Scholar 

  62. M. Taniguchi, H. Okazaki, H. Kobayashi, S. Azuhata, H. Miyadera, H. Muto, T. Tsumura, Pyrolysis and ignition characteristics of pulverized coal particles. J. Energy Res. Technol. 123(1), 32–38 (2001)

    Article  Google Scholar 

  63. J. Cai, M.F. Modest, Absorption coefficient regression scheme for splitting radiative heat sources across phases in gas-particulate mixtures. Powder Technol. 265, 76–82 (2014)

    Article  Google Scholar 

  64. L. Chen, S.Z. Yong, A.F. Ghoniem, Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Progr. Energy Combust. Sci. 38, 156–214 (2012)

    Article  Google Scholar 

  65. N. Nikolopoulos, A. Nikolopoulos, E. Karampinis, P. Grammelis, E. Kakaras, Numerical investigation of the oxy-fuel combustion in large scale boilers adopting the ECO-Scrub technology. Fuel 90, 198–214 (2011)

    Article  Google Scholar 

  66. M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic, New York, 2013)

    Google Scholar 

  67. X.Y. Zhao, D.C. Haworth, T. Ren, M.F. Modest, A transported probability density function/photon Monte Carlo method for high-temperature oxy–natural gas combustion with spectral gas and wall radiation. Combust. Theory Model 17(2), 354–381 (2013)

    Article  Google Scholar 

  68. P. Edge, S.R. Gubba, L. Ma, R. Porter, M. Pourkashanian, A. Williams, LES modelling of air and oxy-fuel pulverised coal combustion—impact on flame properties. Proc. Combust. Inst. 33, 2709–2716 (2011)

    Article  Google Scholar 

  69. A.G. Clements, S. Black, J. Szuhanszki, K. Stechly, A. Pranzitelli, W. Nimmo, M. Pourkashanian, LES and RANS of air and oxy-coal combustion in a pilot-scale facility: predictions of radiative heat transfer. Fuel 151, 146–155 (2015)

    Article  Google Scholar 

  70. L. Ma, M. Gharebaghi, R. Porter, M. Pourkashanian, J.M. Jones, A. Williams, Modelling methods for co-fired pulverised fuel furnaces. Fuel 88, 2448–2454 (2008)

    Article  Google Scholar 

  71. A.A. Townsend, The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech. 4, 361–375 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Soufiani, Temperature turbulence spectrum for high-temperature radiating gases. J. Thermophys. Heat Transf. 5(4), 489–494 (1991)

    Article  Google Scholar 

  73. G. Li, Investigation of turbulence–radiation interactions by a hybrid FV/PDF Monte Carlo method. Ph.D. thesis, The Pennsylvania State University, University Park, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Modest, M.F., Haworth, D.C. (2016). Turbulence–Radiation Interactions in Atmospheric Pressure Turbulent Flames. In: Radiative Heat Transfer in Turbulent Combustion Systems. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-27291-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27291-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27289-4

  • Online ISBN: 978-3-319-27291-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics