Skip to main content

Radiation Effects in Laminar Flames

  • Chapter
  • First Online:
Radiative Heat Transfer in Turbulent Combustion Systems

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 1579 Accesses

Abstract

Even in the absence of turbulence, radiative heat transfer has important influences on the global and local behavior of flames. There is a large and rapidly growing body of literature containing analytic, experimental and simulation studies aimed at isolating and quantifying the influences of radiation on (for example) laminar flame speeds and pollutant emissions in laminar flames. Radiation plays an especially prominent role in “threshold” phenomena, including flammability, extinction, and stability limits for laminar flames. These effects can be amplified in turbulent flames. In this chapter, several examples of important radiation effects in laminar and transitional flames are discussed, before returning to the fully turbulent flames that are the primary focus of this monograph. Spatially one-dimensional systems are considered first, followed by two-dimensional systems. Examples are provided for both premixed and nonpremixed flames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Ju, G. Masuya, F. Liu, Y. Hattori, D. Riechelmann, Asymptotic analysis of radiation extinction of stretched premixed flames. Int. J. Heat Mass Transf. 43, 231–239 (2000)

    Article  MATH  Google Scholar 

  2. Y. Ju, G. Masuya, P.D. Ronney, Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames. Proc. Combust. Inst. 27, 2619–2626 (1998)

    Article  Google Scholar 

  3. A. Haghiri, M. Bidabadi, Dynamic behavior of particles across flame propagation through micro-iron dust cloud with thermal radiation effect. Fuel 90, 2413–2421 (2011)

    Article  Google Scholar 

  4. Z. Chen, Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust. Flame 157, 2267–2276 (2010)

    Article  Google Scholar 

  5. J. Santner, F.M. Haas, Y. Ju, F.L. Dryer, Uncertainties in interpretation of high pressure spherical flame propagation rates due to thermal radiation. Combust. Flame 161, 147–153 (2014)

    Article  Google Scholar 

  6. J. Jayachandran, R. Zhao, F.N. Egolfopoulos, Determination of laminar flame speed using stagnation and spherically expanding flames: molecular transport and radiation effects. Combust. Flame 161, 2305–2316 (2014)

    Article  Google Scholar 

  7. H. Yu, W. Han, J. Santner, X. Gou, C.H. Sohn, Y. Ju, Z. Chen, Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combust. Flame 161, 2815–2824 (2014)

    Article  Google Scholar 

  8. L. Qiao, Transient flame propagation process and flame-speed oscillation phenomenon in a carbon dust cloud. Combust. Flame 159, 673–685 (2012)

    Article  Google Scholar 

  9. M. Bidabadi, A.V. Azad, Effects of radiation on propagating spherical flames of dust-air mixtures. Powder Technol. 276, 45–59 (2015)

    Article  Google Scholar 

  10. Z. Chen, Y. Ju, Combined effects of curvature, radiation, and stretch on the extinction of premixed tubular flames. Int. J. Heat Mass Transf. 51, 6118–6125 (2008)

    Article  MATH  Google Scholar 

  11. M.A.A. Mendes, J.M.C. Pereira, J.C.F. Pereria, A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media. Combust. Flame 153, 525–539 (2008)

    Article  Google Scholar 

  12. I. Schoegl, Radiation effects on flame stabilization on flat flame burners. Combust. Flame 159, 2817–2828 (2012)

    Article  Google Scholar 

  13. J.S. T’ien, Diffusion flame extinction at small stretch rates: the mechanism of radiative loss. Combust. Flame 65, 31–34 (1986)

    Article  Google Scholar 

  14. H.Y. Wang, C.K. Law, On intrinsic oscillation in radiation-affected diffusion flames. Proc. Combust. Inst. 31, 979–987 (2007)

    Article  Google Scholar 

  15. F. Liu, H. Guo, G.J. Smallwood, M. El Hafi, Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 84, 501–511 (2004)

    Article  Google Scholar 

  16. X.L. Zhu, J.P. Gore, Radiation effects on combustion and pollutant emissions of high-pressure opposed flow methan/air diffusion flames. Combust. Flame 141, 118–130 (2005)

    Article  Google Scholar 

  17. H.Y. Wang, W.H. Chen, C.K. Law, Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers. Combust. Flame 148, 100–116 (2007)

    Article  Google Scholar 

  18. P. Narayanan, H.R. Baum, A. Trouvé, Effect of soot addition on extinction limits of luminous laminar counterflow diffusion flames. Proc. Combust. Inst. 33, 2539–2546 (2011)

    Article  Google Scholar 

  19. H.-Y. Shih, J.-R. Hsu, Y.-H. Lin, Computed flammability limits of opposed-jet H2/CO syngas diffusion flames. Int. J. Hydrog. Energy 39, 3459–3468 (2014)

    Article  Google Scholar 

  20. X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta, Study on stretch extinction limits of CH4/CO2 versus high temperature O2/CO2 counterflow non-premixed flames. Combust. Flame 161, 1526–1536 (2014)

    Article  Google Scholar 

  21. K.J. Santa, B.H. Chao, P.B. Sunderland, D.L. Urban, D.P. Stocker, R.L. Axelbaum, Radiative extinction of gaseous spherical diffusion flames in microgravity. Combust. Flame 151, 665–675 (2007)

    Article  MATH  Google Scholar 

  22. M.K. Chernovsky, A. Atreya, H.G. Im, Effect of CO2 diluent on fuel versus oxidizer side of spherical diffusion flames in microgravity. Proc. Combust. Inst. 31, 1005–1013 (2007)

    Article  Google Scholar 

  23. S. Tang, M.K. Chernovsky, H.G. Im, A. Atreya, A computational study of spherical diffusion flames in microgravity with gas radiation. Part I: model development and validation. Combust. Flame 157, 118–126 (2010)

    Google Scholar 

  24. S. Tang, H.G. Im, A. Atreya, A computational study of spherical diffusion flames in microgravity with gas radiation. Part II: parametric studies of the diluent effects on flame extinction. Combust. Flame 157, 127–136 (2010)

    Google Scholar 

  25. Q. Wang, B.H. Chao, Kinetic and radiative extinctions of spherical burner-stabilized diffusion flames. Combust. Flame 158, 1532–1541 (2011)

    Article  Google Scholar 

  26. V.R. Lecoustre, P.B. Sunderland, B.H. Chao, R.L. Axelbaum, Numerical investigation of spherical diffusion flames at their sooting limits. Combust. Flame 159, 194–199 (2012)

    Article  Google Scholar 

  27. V. Nayagam, D.L. Dietrich, M.C. Hicks, F.A. Williams, Cool-flame extinction during n-alkane droplet combustion in microgravity. Combust. Flame 162, 2140–2147 (2015)

    Article  Google Scholar 

  28. T.I. Farouk, M.C. Hicks, F.L. Dryer, Multistage oscillatory “cool flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity combustion. Proc. Combust. Inst. 35, 1701–1708 (2015)

    Article  Google Scholar 

  29. Y. Shoshin, J. Jarosinski, On extinction mechanism of lean limit methane-air flame in a standard flammability tube. Proc. Combust. Inst. 32, 1043–1050 (2009)

    Article  Google Scholar 

  30. F.J. Higuera, V. Muntean, Effect of radiation losses on very lean methane/air flames propagating upward in a vertical tube. Combust. Flame 161, 2340–2347 (2014)

    Article  Google Scholar 

  31. S. Kadowaki, H. Takahashi, H. Kobayashi, The effects of radiation on the dynamic behavior of cellular premixed flames generated by intrinsic instability. Proc. Combust. Inst. 33, 1153–1162 (2011)

    Article  Google Scholar 

  32. R.B. Moussa, M. Guessasma, C. Proust, K. Saleh, J. Fortin, Thermal radiation contribution to metal dust explosions. Procedia Eng. 102, 714–721 (2015)

    Article  Google Scholar 

  33. P.R. Medwell, G.J. Nathan, Q.N. Chan, Z.T. Alwahabi, B.B. Dally, The influence on the soot distribution within a laminar flame of radiation at fluxes of relevance to concentrated solar radiation. Combust. Flame 158, 1814–1821 (2011)

    Article  Google Scholar 

  34. A. Hamins, M. Bundy, C.B. Oh, S.C. Kim, Effect of buoyancy on the radiative extinction limit of low-strain-rate nonpremixed methane-air flames. Combust. Flame 151, 225–234 (2007)

    Article  Google Scholar 

  35. J.H. Kent, H.G. Wagner, Why do diffusion flames emit smoke? Combust. Sci. Technol. 41, 245–269 (1984)

    Article  Google Scholar 

  36. F. Liu, H. Guo, G.J. Smallwood, Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame. Combust. Flame 138, 136–154 (2004)

    Article  Google Scholar 

  37. H. Guo, F. Liu, G.J. Smallwood, O.L. Gülder, Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene-air diffusion flame. Combust. Flame 145, 324–338 (2006)

    Article  Google Scholar 

  38. H. Guo, G.J. Smallwood, The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame. Combust. Flame 149, 224–233 (2007)

    Article  Google Scholar 

  39. V.R. Katta, W.M. Roquemore, A. Menon, S.-Y. Lee, R.J. Santoro, T.A. Litzinger, Impact of soot on flame flicker. Proc. Combust. Inst. 32, 1343–1350 (2009)

    Article  Google Scholar 

  40. F. Liu, G.J. Smallwood, W. Kong, The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity. J. Quant. Spectrosc. Radiat. Transf. 112, 1241–1249 (2011)

    Article  Google Scholar 

  41. A. Fuentes, R. Henríqez, F. Nmira, F. Liu, J.-L. Consalvi, Experimental and numerical study of the effects of the oxygen index on the radiation characteristics of laminar coflow diffusion flames. Combust. Flame 160, 786–795 (2013)

    Article  Google Scholar 

  42. R. Demarco, F. Nmira, J.L. Consalvi, Influence of thermal radiation on soot production in laminar axisymmetric diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 120, 52–69 (2013)

    Article  Google Scholar 

  43. D. Zhang, J. Fang, J.-F. Guan, J.-W. Wang, Y. Zeng, J.-J. Wang, Y.-M. Zhang, Laminar jet methane/air diffusion flame shapes and radiation of low air velocity coflow in microgravity. Fuel 130, 25–33 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Modest, M.F., Haworth, D.C. (2016). Radiation Effects in Laminar Flames. In: Radiative Heat Transfer in Turbulent Combustion Systems. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-27291-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27291-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27289-4

  • Online ISBN: 978-3-319-27291-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics