Skip to main content

Emerging Invaders from the Cultivated Croplands: An Invasion Perspective

  • Chapter
  • First Online:
Gene Pool Diversity and Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 10))

Abstract

Understanding potential sources and pathways of colonization by alien plant propagules in novel environments is crucial for assessing invasion risks posed by aggressive colonizers. With the enormous expansion and intensification of agriculture, cultivated croplands are emerging as potent sources of robust weeds and/or invaders. Ongoing increase in adaptability and evolutionary potential of agricultural systems demands our understanding to better evaluate the invasion risks to heterogeneous environments. The review intends to collate the fine ecological overlap of crops and associated plants with the plant invaders. We begin with an overview of plant invasion process and discuss invasion risks posed by cultivated croplands through putative propagule escape from crops, crop-associated weeds, and feral crop descendants, continuing with a subsequent discussion on their fate. The synthesis concludes with promising prospects for research which may generate better insights on putative invasion risks from croplands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achten W, Verchot L, Franken Y (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084

    Article  CAS  Google Scholar 

  • Adkins SW, Sowerby MS (1996) Allelopathic potential of the weed Parthenium hysterophorus L. in Australia. Plant Prot Q 11:20–23

    Google Scholar 

  • Anderson NO, Galatowitsch SM, Gomez N (2006) Selection strategies to reduce invasive po-tential in introduced plants. Euphytica 148:203–216

    Article  Google Scholar 

  • Andersson MS, de Vicente MC (2010) Gene flow between crops and their wild relatives. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Anjani K (2012) Castor genetic resources: a primary gene pool for exploitation. Ind Crops Prod 35:1–14

    Article  Google Scholar 

  • Annapurna C, Singh JS (2003a) Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness. Weed Res 43:190–198

    Google Scholar 

  • Annapurna C, Singh JS (2003b) Phenotypic plasticity and plant invasiveness: case study of congress grass. Curr Sci 85:197–201

    Google Scholar 

  • Antonovics J (1968) Evolution in closely adjacent plant populations V. Evolution of self-fertility. Heredity 23:219–238

    Article  Google Scholar 

  • Antonovics J (1992) Toward community genetics. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 426–449

    Google Scholar 

  • Ayal S, Levy AA (2005) Wheat domestication and de-domestication–What are the odds? In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 167–173

    Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The Genetics of Colonizing Species. Academic Press, New York, pp 147–168

    Google Scholar 

  • Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70

    Article  Google Scholar 

  • Barrett SH (1983) Crop mimicry in weeds. Econ Bot 37:255–282

    Article  Google Scholar 

  • Barrett SCH (1989) Waterweed invasions. Sci Am 260:90–97

    Article  Google Scholar 

  • Barrett SCH, Husband BC (1990) Genetics of plant migration and colonization. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant Population Genetics. Breeding and Genetic Resources, Sinauer Associates, Massachusetts, pp 254–277

    Google Scholar 

  • Bazzaz FA (1986) Life history of colonizing plants: some demographic, genetic and physiological features. In: Mooney HA, Drake JS (eds) Ecology of biological invasions of North America and Hawaii. Springer, New York, pp 96–110

    Chapter  Google Scholar 

  • Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of angiosperm weeds. Ann Bot 82:121–134

    Article  Google Scholar 

  • Binggeli P (1996) A taxonomic, biogeographical and ecological overview of invasive woody plants. J Veg Sci 7:121–124

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Bosbach K, Hurka H (1981) Biosystematic studies on Capsella bursa-pastoris (Brassicaceae): enzyme polymorphism in natural populations. Plant Syst Evol 137:73–94

    Article  CAS  Google Scholar 

  • Buddenhagen CE, Chimera C, Clifford P (2009) Assessing biofuel crop invasiveness: a case study. PLoS ONE 4(4):e5261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burger JC, Lee S, Ellstrand NC (2006) Origin and genetic structure of feral rye in the western United States. Mol Ecol 15:2527–2539

    Article  CAS  PubMed  Google Scholar 

  • Burger JC, Holt JS, Ellstrand NC (2007) Rapid phenotypic divergence of feral rye from domesticated cereal rye. Weed Sci 55:204–271

    Article  CAS  Google Scholar 

  • Campbell LG, Snow AA (2007) Competition alters life history and increases the relative fecundity of crop-wild radish hybrids (Raphanus spp.). New Phytol 173:648–660

    Article  PubMed  Google Scholar 

  • Cao Q, Lu BR, Xia H et al (2006) Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in North-eastern China revealed by simple sequence repeat (SSR) markers. Ann Bot 98:1241–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82

    Article  Google Scholar 

  • Chapman MA, Burke JM (2006) Radishes gone wild. Heredity 97:379–380

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Guo SL, Yin LP (2010) Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation. Biol Invasions 12:1335–1348

    Article  Google Scholar 

  • Clements DR, DiTommaso A, Jordan N et al (2004) Adaptability of plants invading North American cropland. Agric Ecosyst Environ 104(3):379–398

    Article  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ, Harvey PH, Purvis A (1996) Comparative ecology of the native and alien floras of the British Isles. Philos Trans R Soc Lond B Biol Sci 351:1251–1259

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • de Wet JMJ (1995) Finger millet. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, Harlow, pp 137–140

    Google Scholar 

  • de Wet JMJ, Harlan JR (1975) Weeds and domesticates: evolution in the man-made habitat. Econ Bot 29:99–107

    Article  Google Scholar 

  • de Wet JMJ, Prasada Rao KE, Brink DE et al (1984) Systematics and evolution of Eleusine coracana (Gramineae). Am J Bot 71:550–557

    Article  Google Scholar 

  • Dehnen-Schmutz K, Touza J, Perrings C et al (2007a) The horticultural trade and ornamental plant invasions in Britain. Conserv Biol 21:224–231

    Google Scholar 

  • Dehnen-Schmutz K, Touza J, Perrings C et al (2007b) A century of the ornamental plant trade and its impacts on invasion success. Divers Distrib 13:527–534

    Google Scholar 

  • DiTomaso JM, Barney JN, Fox A (2007) Biofuel feedstocks: the risk of future invasions. Council for Agricultural Science and Technology Commentary, QTA2007-1

    Google Scholar 

  • DiTomaso JM, Reaser JK, Dionigi CP et al (2010) Biofuel vs bioinvasion: seeding policy priorities. Environ Sci Technol 44:6906–6910

    Article  CAS  PubMed  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol Lett 11(7):701–709

    Article  PubMed  Google Scholar 

  • Driscoll DA, Catford JA, Barney JN et al (2014) New pasture plants intensify invasive species risk. Proc Natl Acad Sci USA 111:16622–16627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehara K, Abe S (1950) Classification of the forms of Japanese barnyard millet. Proc Crop Sci Soc Jpn 20:245–246

    Article  Google Scholar 

  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Evol Syst 30:536–539

    Google Scholar 

  • Ellstrand NC, Heredia SM, Leak-Garcia JA et al (2010) Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Evol Appl 3:494–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Esler KJ, Prozesky H, Sharma GP et al (2010) How wide is the “knowing-doing” gap in invasion biology? Biol Invasions 12:4065–4075

    Article  Google Scholar 

  • Falk-Peterson J, Bøhn T, Sandlund OD (2006) On the numerous concepts in invasion biology. Biol Invasions 8:1409–1424

    Article  Google Scholar 

  • Flory SL, Lorentz KA, Gordon DR et al (2012) Experimental approaches for evaluating the invasion risk of biofuel crops. Environ Res Lett 7(4):045904

    Article  Google Scholar 

  • Foxcroft LC, Richardson DM, Wilson JRU (2008) Ornamental plants as invasive aliens: prob-lems and solutions in Kruger National Park, South Africa. Environ Manage 41:32–51

    Article  PubMed  Google Scholar 

  • Frost HG (1923) Heterosis and dominance of size factors in Raphanus. Genetics 8:116–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentle CB, Duggin JA (1997) Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecol 132:85–95

    Article  Google Scholar 

  • GISP (2008) Biofuels run the risk of becoming invasive species. The Global Invasive Species Programme. http://www.issg.org/pdf/publications/GISP/Resources/BiofuelsReport.pdf

  • GISP (2010) The IAS problem. The Global Invasive Species Programme. http://www.gisp.org/about/IAS

  • Goel U, Saxena DB, Kumar B (1989) Comparative study of allelopathy as exhibited by Prosopis juliflora swartz and Prosopis cineraria (L) Druce. J Chem Ecol 15:591–600

    Article  CAS  PubMed  Google Scholar 

  • Gordon DR, Tancig KJ, Onderdonk DA et al (2011) Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass Bioenerg 35:74–79

    Article  Google Scholar 

  • Gould F (1991) The evolutionary potential of crop pests. Am Sci 79:496–507

    Google Scholar 

  • Goyal N, Sharma GP (2015) Lantana camara L. (sensu lato): an enigmatic complex. NeoBiota 25:15–26

    Article  Google Scholar 

  • Goyal N, Pardha-Saradhi P, Sharma GP (2014) Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environ Monit Assess 186:7941–7948

    Article  CAS  PubMed  Google Scholar 

  • Green RE (1997) The influence of numbers released on the outcome of attempts to introduce exotic bird species to New Zealand. J Anim Ecol 66:25–35

    Article  Google Scholar 

  • Gressel J (2005) Introduction—the challenges of ferality. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 1–7

    Chapter  Google Scholar 

  • Gurevitch J, Fox GA, Wardle GM et al (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14(4):407–418

    Article  CAS  PubMed  Google Scholar 

  • Hegde SG, Nason JD, Clegg J et al (2006) The evolution of California’s wild radish has resulted in the extinction of its progenitors. Evolution 60:1187–1197

    Article  PubMed  Google Scholar 

  • Hilu K, de Wet JMJ, Seigler D (1978) Flavonoid patterns and systematics in Eleusine. Biochem Syst Ecol 6:247–249

    Article  CAS  Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. Wiley, New York

    Google Scholar 

  • Hooftman DAP, De Jong MJ, Oostermeijer JGB et al (2007) Modelling the long-term consequences of crop-wild relative hybridization: a case study using four generations of hybrids. J Appl Ecol 44:1035–1045

    Article  Google Scholar 

  • Hovick SM, Campbell LG, Snow AA et al (2012) Hybridization alters early life-history traits and increases plant colonization success in a novel region. Am Nat 179:192–203

    Article  PubMed  Google Scholar 

  • Ishikawa R, Toki N, Imai K et al (2005) Origin of weedy rice grown in Bhutan and the force of genetic diversity. Genet Resour Crop Ev 52(4):395–403

    Article  Google Scholar 

  • Jordan NR, Jannink JL (1997) Assessing the practical importance of weed evolution: a research agenda. Weed Res 37:237–246

    Article  Google Scholar 

  • Kalwij JM, Robertson MP, van Rensburg BJ (2008) Human activity facilitates altitudinal expansion of exotic plants along a road in montane grassland, South Africa. Appl Veg Sci 11:491–498

    Article  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kowarik I (2003) Human agency in biological invasions: secondary releases foster naturalisation and population expansion of alien plant species. Biol Invasions 5:293–312

    Google Scholar 

  • Kowarik I (2005) Urban ornamentals escaped from cultivation. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 97–121

    Chapter  Google Scholar 

  • Kubešová M, Moravcová L, Suda J et al (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96

    Google Scholar 

  • Kuester A, Conner JK, Culley T et al (2014) How weeds emerge: a taxonomic and trait-based examination using United States data. New Phytol 202:1055–1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Cons 117:215–226

    Article  Google Scholar 

  • Leiss KA, Müller-Schärer H (2001) Adaptation of Senecio vulgaris (Asteraceae) to ruderal and agricultural habitats. Am J Bot 88:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326

    Article  Google Scholar 

  • Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Londo JP, Schaal BA (2007) Origins and population genetics of weedy red rice in the USA. Mol Ecol 16:4523–4535

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale WM (1994) Inviting trouble: introduced pasture species in Northern Australia. Aust J Ecol 19:345–354

    Article  Google Scholar 

  • Low T, Booth C, Council I (2007) The weedy truth about biofuels. In: Invasive Species Council, Melbourne, Australia, p 46

    Google Scholar 

  • Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121

    Article  Google Scholar 

  • Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemology, global consequences and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Maheshwari JK (1965) Alligator weed in Indian lakes. Nature 205:1270

    Article  Google Scholar 

  • Mantri A, Annapurna C, Singh JS (2002) Terrestrial plant invasion and global change. In: Tripathi G, Tripathi YC (eds) Bioresource and Environment Campus Book International, New Delhi, p 25–44

    Google Scholar 

  • Martínez-Ghersa MA, Ghersa CM, Satorre EH (2000) Co-evolution of agricultural systems and their weed companions: implications for research. Field Crop Res 67:181–190

    Article  Google Scholar 

  • Martins VF, Guimarães PR, Silva RR (2006) Secondary seed dispersal by ants of Ricinus communis (Euphorbiaceae) in the Atlantic forest in Southeastern Brazil: influence on seed germination. Sociobiology 47:265–274

    Google Scholar 

  • Martins VF, Guimarães Jr PR, Haddad CRB et al (2009a) The effect of ants on the seed dispersal cycle of the typical myrmecochorous Ricinus communis. Plant Ecol 205:213–222

    Google Scholar 

  • Martins VF, Haddad CRB, Semir J (2009b) Seed germination of Ricinus communis in predicted settings after autochorous and myrmecochorous dispersal. J Torrey Bot Soc 136:84–90

    Google Scholar 

  • Martins VF, Haddad CRB, Semir J (2011) Responses of the invasive Ricinus communis seedlings to competition and light. N Z J Bot 49:263–279

    Article  Google Scholar 

  • Mathews KM (1972) The high altitude ecology of Lantana. Indian For 97:170–171

    Google Scholar 

  • Mohler CL (2001) Weed evolution and community structure. In: Liebman M, Mohler C, Staver CP (eds) Ecological management of agricultural weeds. Cambridge University Press, Cambridge, pp 444–493

    Chapter  Google Scholar 

  • Mokotjomela TM, Musil CF, Esler KJ (2013) Potential seed dispersal distances of native and non-native fleshy fruiting shrubs in the South African Mediterranean climate region. Plant Ecol 214(9):1127–1137

    Article  Google Scholar 

  • Morrell PL, Williams-Coplin TD, Lattu AL et al (2005) Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 14:2143–2154

    Article  CAS  PubMed  Google Scholar 

  • Mücher T, Hesse P, Pohl-Orf M et al (2000) Characterization of weed beet in Germany and Italy. J Sugar Beet Res 37:19–38

    Article  Google Scholar 

  • Mulligan GA, Findlay JN (1970) Reproductive systems and colonization in Canadian weeds. Can J Bot 48:859–860

    Article  Google Scholar 

  • Negussie A, Achten WM, Aerts R et al (2013) Invasiveness risk of the tropical biofuel crop Jatropha curcas L. into adjacent land use systems: from the rumors to the experimental facts. Glob Change Biol Bioenergy 5(4):419–430

    Google Scholar 

  • Negussie A, Nacro S, Achten WM et al (2015) Insufficient evidence of Jatropha curcas L. invasiveness: experimental observations in Burkina Faso, West Africa. Bioenergy Res 8(2):570 580

    Google Scholar 

  • Neuhauser C, Andow DA, Heimpel GE et al (2003) Community genetics: Expanding the synthesis of ecology and genetics. Ecology 84:545–558

    Article  Google Scholar 

  • Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. succession. Springer, Netherlands, pp 5–21

    Chapter  Google Scholar 

  • Noor M, Salam U, Khan MA (1995) Allelopathic effects of Prosopis juliflora Swartz. J Arid Environ 31:83–90

    Article  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Pandit MK, White SM, Pocock MJO (2014) The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 203:697–703

    Article  CAS  PubMed  Google Scholar 

  • Panetsos CA, Baker HG (1967) The origin of variation in ‘‘wild’’ Raphanus sativus (Cruciferae) in California. Genetica 38:243–274

    Article  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR et al (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.). Pers. Proc Natl Acad Sci USA 92:6127–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paynter Q, Csurhes SM, Heard TA et al (2003) Worth the risk? Introduction of legumes can cause more harm than good: an Australian perspective. Aust Syst Bot 16:81–88

    Article  Google Scholar 

  • Pieterse AH, Murphy KJ (eds) (1990) Aquatic Weeds. Oxford University Press, Oxford

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R et al (2000) Environmental and economic costs of non-indigenous species in the United States. Bioscience 50(1):53–65

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE et al (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  • Raghu S, Davis A (2007) Exotic grasses as biofuels the concerns. Ill Nat Steward 16:30–32

    Google Scholar 

  • Raghu S, Anderson RC, Daehler CC et al (2006) Adding biofuels to the invasive species fire? Science 313:1742

    Article  CAS  PubMed  Google Scholar 

  • Rai JPN, Tripathi RS (1982) Allelopathy as a factor contributing to dominance of Eupatorium riparium Regel. Indian J Ecol 9:14–20

    Google Scholar 

  • Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Cons 78:171–181

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1662

    Article  Google Scholar 

  • Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336

    Article  PubMed  Google Scholar 

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM, Blanchard R (2011) Learning from our mistakes: minimizing problems with invasive biofuel plants. Curr Opin Environ Sustain 3:36–42

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M et al (2000a) Naturalization and invasion of alien plants: concept and definitions. Divers Distrib 6:93–107

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio C et al (2000b) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Google Scholar 

  • Ridley CE, Ellstrand NC (2009) Evolution of enhanced reproduction in the hybrid-derived invasive, California wild radish (Raphanus sativus). Biol Invasions 11:2251–2264

    Article  Google Scholar 

  • Ridley CE, Ellstrand NC (2010) Rapid evolution of morphology and adaptive life history in the invasive California wild radish (Raphanus sativus) and the implications for management. Evol Appl 3(1):64–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridley CE, Kim SC, Ellstrand NC (2008) Bidirectional history of hybridization in California wild radish, Raphanus sativus (Brassicaceae), as revealed by chloroplast DNA. Am J Bot 95:1437–1442

    Article  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32:305–332

    Article  Google Scholar 

  • Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105

    Article  Google Scholar 

  • Schlaepfer DR, Edwards PJ, Semple JC et al (2008) Cytogeography of Solidago gigantea (Asteraceae) and its invasive ploidy level. J Biogeogr 35(11):2119–2127

    Article  Google Scholar 

  • Schlaepfer DR, Edwards PJ, Billeter R (2010) Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia 163(3):661–673

    Article  PubMed  Google Scholar 

  • Severino LS, Auld DL, Baldanzi M et al (2012) A review on the challenges for increased production of castor. Agron J 104:853–880

    Article  Google Scholar 

  • Sharma GP, Esler KJ (2008) Phenotypic plasticity among Echium plantagineum populations in different habitats of Western Cape, South Africa. S Afr J Bot 74:746–749

    Article  Google Scholar 

  • Sharma GP, Singh JS, Raghubanshi AS (2005a) Plant invasions: Emerging trends and future implications. Curr Sci 88:726–734

    Google Scholar 

  • Sharma GP, Raghubanshi AS, Singh JS (2005b) Lantana invasion: an overview. Weed Biol Manag 5:157–165

    Google Scholar 

  • Shen D, Sun H, Huang M et al (2013) Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). BMC Genom 14(1):721

    Article  CAS  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Smith LL, Barney JN (2014) The relative risk of invasion: evaluation of Miscanthus × giganteus seed establishment. Invasive Plant Sci Manag 7:93–106

    Article  Google Scholar 

  • Snow AA, Campbell LG (2005) Can feral radishes become weeds? In: Gressel J (ed) Crop Ferality and Volunteerism. CRC Press, Boca Raton, pp 193–208

    Chapter  Google Scholar 

  • Stewart CN Jr, Tranel PJ, Horvath DP et al (2009) Evolution of weediness and invasiveness: charting the course for weed genomics. Weed Sci 57:451–462

    Article  CAS  Google Scholar 

  • Suda J, Meyerson LA, Leitch IJ et al (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007

    Article  PubMed  Google Scholar 

  • Sun Q, Ni Z, Liu Z et al (1998) Genetic relationships and diversity among Tibetan wheat, common wheat and European spelt wheat revealed by RAPD markers. Euphytica 99:205–211

    Article  CAS  Google Scholar 

  • Suneson CA, Rachie KO, Khush GS (1969) A dynamic population of weedy rye. Crop Sci 9:121–124

    Article  Google Scholar 

  • Thompson JN (1999) The evolution of species interactions. Science 284:2116–2118

    Article  CAS  PubMed  Google Scholar 

  • Thompson GD, Bellstedt DU, Byrne M et al (2012) Cultivation shapes genetic novelty in a globally important invader. Mol Ecol 21:3187–3199

    Article  PubMed  Google Scholar 

  • Tripathi RS, Singh RS, Rai JPN (1981) Allelopathic potential of Eupatorium adenophorum—a dominant ruderal weed of Meghalaya. Proc Indian Natl Sci Acad Part B 47:458–465

    Google Scholar 

  • Valery L, Fritz H, Lefeuvre JC et al (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351

    Article  Google Scholar 

  • van Dijk H, den Nijs HCM, Bartsch D, Sweet J (2004) Gene exchange between wild and crop in Beta vulgaris: how easy is hybridization and what will happen in later generations? In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from Genetically Modified Plants into Wild Relatives. CABI Publishing, Wallingford, pp 53–61

    Chapter  Google Scholar 

  • Vanaja M, Jyothi M, Ratnakumar P et al (2008). Growth and yield responses of castor bean (Ricinus communis L.) at two enhanced CO2 levels. Plant Soil Environ UZPI (Czech Republic)

    Google Scholar 

  • Vermeij GJ (1996) An agenda for invasion biology. Biol Conserv 78:3–9

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL et al (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Weiher EV, Werf A, Thompson K et al (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Weinig C (2000) Plasticity versus canalization: population differences in the timing of shade avoidance responses. Evolution 54:441–445

    Article  CAS  PubMed  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman and Hall, London, p 244

    Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ et al (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. V.R. Rajpal and Prof. S.N. Raina for the invitation to write this chapter. GPS acknowledges funding from University of Delhi and Department of Science and Technology, India. NG acknowledges Senior Research Fellowship (SRF) support from University Grants Commission, India. Constructive suggestions by Prof. A.S. Raghubanshi, Banaras Hindu University are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan Prakash Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goyal, N., Sharma, G.P. (2016). Emerging Invaders from the Cultivated Croplands: An Invasion Perspective. In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-27096-8_9

Download citation

Publish with us

Policies and ethics