Skip to main content

Arachis Gene Pools and Genetic Improvement in Groundnut

  • Chapter
  • First Online:
Gene Pool Diversity and Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 10))

Abstract

Groundnut (Arachis hypogaea L.) is an important oilseed and food crop in the world. The crop is predominantly grown in low input production systems in developing countries in Asia and Africa. There are several production constraints, both biotic and abiotic, to groundnut. Some of these are global in nature and the others are either regional or local. Four Arachis gene pools contain 80 species, distributed among nine sections are native to five countries of South America. Section Arachis contains tetraploid cultivated groundnut, divided into two subspecies and six botanical varieties and a number of cross-compatible diploid species with rich genetic diversity. International efforts have made significant progress in collection and conservation of these genetic resources, facilitating genetic improvement. Groundnut is an autogamous crop. The pedigree and bulk selection methods are more commonly used by the groundnut breeders. Conventional breeding, including cytogenetic manipulations introgressing genes from cross-compatible wild diploid species has been effective in some areas, while in others it has been tardy due to lack of proper and effective phenotyping tools and limited understanding of the genomics, genetics/inheritance, and underlying mechanisms influencing targeted traits. A greater diversification of parental resources (both cultivated and wild Arachis species) in breeding programs is required to develop new cultivars with diversified genetic backgrounds, which will enable them to perform better under the changing climatic/adverse conditions. Molecular breeding is in infancy. Infrequent and low polymorphisms have restricted the progress in the development and application of genetic maps, except in cases where polymorphic chromosomal regions have been introgressed from diploid wild Arachis species into A. hypogaea. Both conventional and nonconventional crop improvement efforts in groundnut need to concentrate on bridging the yield gap between the potential yield and the realized yield by alleviating major production constraints particularly in rainfed environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akem CN, Melouk HA, Smith OD (1992) Field evaluation of peanut genotypes for resistance to sclerotinia blight. Crop Prot 11:345–348

    Article  Google Scholar 

  • Amin PW, Singh KN, Dwivedi SL, Rao VR (1985) Sources of resistance to jassid (Empoasca kerri Purthi), thrips (Frankliniella shultzei Trybom) and termites (Odontotermes sp.) in groundnut (Arachis hypogaea L.). Peanut Sci 12:58–60

    Article  Google Scholar 

  • Anderson WF, Patanothai A, Wynne JC, Gibbons RW (1990) Assessment of a diallel cross for multiple foliar pest resistance in peanut. Olėagineux 45:373–378

    Google Scholar 

  • Arunyanark A, Pimratch S, Jogloy S, Wongkaew S, Vorasoot N, Akkasaeng C, Kesmala T, Patanothai A, Holbrook CC (2012) Association between aflatoxin contamination and N2 fixation in peanut under drought conditions. Int J Plant Prod 6:161–172

    CAS  Google Scholar 

  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F (2011) Enhanced expression of AtNHX1 in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49:250–256

    Article  CAS  PubMed  Google Scholar 

  • Bag S, Singh RS, Jain RK (2007) Agrobacterium-mediated transformation of groundnut with coat protein gene of Tobacco streak virus. Ind J Virol 18:65–69

    Google Scholar 

  • Bandyopadhyay A, Nautiyal PC, Radhakrishnan T, Gor HK (1999) Role of testa, cotyledon and embryonic axis in seed dormancy of groundnut (Arachis hypogaea L). J Agron Crop Sci 182:37–41

    Article  Google Scholar 

  • Banjara M, Zhu LF, Shen GX, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/ proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67

    Article  Google Scholar 

  • Banks DJ (1976) Peanuts: germplasm resources. Crop Sci 16:499–502

    Article  Google Scholar 

  • Bera SK, Kasundra SV, Kamdar JH, Ajay BC, Lal C, Thirumalasamy PP, Dash P, Maurya K (2014) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron J Plant Breed 5:22–29

    Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB 1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki K, Sharma KK (2014) Transgenic peanut over expressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340

    Article  CAS  Google Scholar 

  • Bhatnagar-Panwar M, Bhatnagar-Mathur P, Bhaaskarla VV, Dumbala SR, Sharma KK (2013) Rapid, accurate and routine HPLC method for large-scale screening of pro-vitamin A carotenoids in oilseeds. J Biochem Biotechnol. doi:10.1007/s13562-013-0239-1

    Google Scholar 

  • Brown AHD (1989) The case of core collection. In: Brown AHD et al. (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 135–156

    Google Scholar 

  • Bucher E, Sijen T, De Haan P, Goldbach R, Prins M (2003) Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buiel AAM (1996) Quantitative resistance to peanut bud necrosis tospovirus in groundnut. Ph D dissertation, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Burow MD, Simpson CE, Faries MW, Starr JL, Paterson AH (2009) Molecular biogeographic study of recently described A- and B-genome Arachis species, also providing new insights into the origin of cultivated peanut. Genome 52:107–119

    Article  CAS  PubMed  Google Scholar 

  • Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] resistance. Mol Breed 2:369–379

    Article  CAS  Google Scholar 

  • Chamberlin Chenault Kelly D, Melouk Hassan A, Payton Mark E (2010) Evaluation of the U.S. peanut mini core collection using a molecular marker for resistance to Sclerotinia minor Jagger. Euphytica 172:109–115

    Article  Google Scholar 

  • Chen CY, Barkley Noelle A, Wang Ming L, Holbrook Corley C, Dang Phat M (2013a) Registration of purified accessions for the US peanut mini-core germplasm collection. J Plant Regis 8(1):77–85

    Article  Google Scholar 

  • Chen CY, Nuti RC, Rowland DL, Faircloth WH, Lamb MC, Harvey E (2013b) Heritability and genetic relationships for drought-related traits in peanut. Crop Sci 53:1392–1402

    Article  Google Scholar 

  • Chenault KD, Maas A (2005) Identification of a simple sequence repeat (SSR) marker in cultivated peanut (Arachis hypogaea L.) potentially associated with sclerotinia blight resistance. Proc Am Peanut Res Educ Soc Inc 37:24-25

    Google Scholar 

  • Chenault KD, Melouk HA, Payton ME (2005) Field reaction to sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci 45:511–515

    Article  CAS  Google Scholar 

  • Chenault KD, Payton ME (2003) Genetic transformation of runner-type peanut with the nucleocapsid gene of tomato spotted wilt virus. Peanut Sci 30:112–115

    Article  CAS  Google Scholar 

  • Choi K, Burow MD, Church G, Paterson AH, Simpson CE, Starr JL (1999) Genetics and mechanisms of resistance to Meloidogyne arenaria in peanut germplasm. J Nematol 31:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Faustinelli P, Ramos ML, Hajduch M, Thelen JJ, Maleki SJ, Ozias-Akins P (2008) Reduction of IgE binding and non-Procmotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h2 and Ara h6 in peanut. J Agric Food Chem 56:11225–11233

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036

    Article  CAS  Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins (2011) Marker-assisted selection to pyramid nematode resistance and high oleic trait in peanut. Plant Genome 4:110–117

    Google Scholar 

  • Craufurd PQ, Prasad PVV, Kakani VG, Wheeler TR, Nigam SN (2003) Heat tolerance in groundnut. Field Crops Res 80:63–77

    Article  Google Scholar 

  • Culbreath AK, Beute MK, Campbell CL (1991) Spatial and temporal aspects of epidemics of Cylindrocladium black rot resistant and susceptible peanut genotypes. Phytopathology 81:144–150

    Article  Google Scholar 

  • Culbreath AK, Gorbet DW, Martinez-Ochoa N, Holbrook CC, Todd JW, Isleib TG, Tillman BL (2005) High levels of field resistance to tomato spotted wilt virus in peanut breeding lines derived from hypogaea and hirsuta botanical varieties. Peanut Sci 32:20–24

    Article  Google Scholar 

  • Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol 41:53–75

    Article  CAS  PubMed  Google Scholar 

  • Culver JN, Sherwood JL, Melouk HA (1987) Resistance to Peanut Stripe Virus in Arachis germplasm. Plant Dis 71:1080–1082

    Article  Google Scholar 

  • Dawson WO (1996) Gene silencing and virus resistance: a common mechanism. Trends Plant Sci 1:107–108

    Article  Google Scholar 

  • De Berchoux C (1960) La rosette l’arachide en Haute-Volta. Comportement des lignes resistantes. Olėagineux 15:229–233

    Google Scholar 

  • Devi MJ, Bhatnagar-Mathur P, Sharma KK, Serraj R, Anwar SY, Vadez V (2011) Relationships between transpiration efficiency and its surrogate traits in rd29A: DREB 1Atransgenic lines of groundnut. J Agron Crop Sci 197:271–283

    Article  CAS  Google Scholar 

  • Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: The silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergencity. Plant Biotechnol J 6:135–145

    Article  CAS  PubMed  Google Scholar 

  • Dubard M (1906) De l’origine de l’Arachide. Mus. Nat. d’His. Naturelle, Paris Bull 5:340–344

    Google Scholar 

  • Dwivedi SL, Amin PW, Rasheedunisa Nigam SN, Nagabhushanam GVS, Rao VR, Gibbons RW (1986) Genetic analysis of trichome characters associated with resistance to jassid (Empoasca kerri Pruthi) in peanut. Peanut Sci 13:15–18

    Article  Google Scholar 

  • Dwivedi SL, Crouch JH, Nigam SN, Ferguson ME, Paterson AH (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv Agron 80:153–221

    Article  CAS  Google Scholar 

  • Dwivedi SL, Nigam SN, Reddy DVVR, Reddy AS, Ranga Rao GV (1995) Progress in breeding groundnut varieties resistant to peanut bud necrosis virus and its vector. In: Lenne JM (ed) Buiel AAM, Parlevliet JE., Recent studies on peanut bud necrosis disease: Proceedings of a meeting 20 March 1995, ICRISAT Asia Center, Patancheru, AP, India. International Crops Research Institute for the Semi-Arid Tropics; Dept Plant Breed, Wageningen, pp 35–40

    Google Scholar 

  • Entoori K, Sreevathsa R, Manoj KA, Kumar PA, Kumar ARV, Madhusudhan B, Udayakumar (2008) A chimeric cry1X gene imparts resistance to Spodoptera litura and Helicoverpa armigera in the transgenic groundnut. EurAsian J BioSci 2:53–65

    Google Scholar 

  • Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187–220

    Google Scholar 

  • Gardner MEB, Stalker HT (1983) Cytology and leafspot resistance of section Arachis amphiploids and their hybrids with Arachis hypogaea. Crop Sci 23:1069–1074

    Article  Google Scholar 

  • Gautami B, Foncĕka D, Pandey MK, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, Bhanu Prakash A, Shah TM, Gowda MVC, Nigam SN, Liang X, Hoisington DA, Guo A, Bertioli DJ, Jean-Francois Rami, Varshney RK (2012a) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS ONE 7:1–11

    Article  CAS  Google Scholar 

  • Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK (2012b) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:757–772

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbons RW, Bunting AH, Smartt JS (1972) The classification of varieties of groundnut (Arachis hypogaea L.). Euphytica 21:78–85

    Article  Google Scholar 

  • Girdthai T, Jogloy S, Vorasoot N, Akkasaeng C, Wongkaew S, Holbrook Patanothai A (2010) Heritability of and genotypic correlations between aflatoxin traits and physiological traits for drought tolerance under end of season drought in peanut (Arachis hypogaea L.). Field Crops Res 118:69–176

    Article  Google Scholar 

  • Green CC, Wynne JC, Beute MK (1983) Genetic variability and heritability estimates based on the F2 generation from crosses of large seeded Virginia type peanuts with lines resistant to Cylindrocladium black rot. Peanut Sci 10:47–51

    Article  Google Scholar 

  • Gregory MP, Gregory WC (1979) Exotic germplasm of Arachis L.: interspecific hybrids. J Hered 70:185–193

    Google Scholar 

  • Gregory WC, Gregory MP (1976) Groundnuts. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 151–154

    Google Scholar 

  • Gregory WC, Gregory MP, Krapovickas A, Smith BW, Yarbrough JA (1973) Structures and genetic resources of peanuts. In: Wilson CT (ed) Peanuts—Culture and uses. Am Peanut Res Educ Assoc Stillwater, OK 3:47–134

    Google Scholar 

  • Gregory WC, Krapovickas A, Gregory MP (1980) Structure, variation, evolution and classification. In: Summerfield RJ, Bunting AH (eds) Arachis. Advances in legume science, vol 2. Kew, London, pp 469–481

    Google Scholar 

  • Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  CAS  PubMed  Google Scholar 

  • Hamidou F, Halilou O, Vadez V (2013) Assessment of groundnut under combined heat and drought stress. J Agron Crop Sci 199:1–11

    Article  Google Scholar 

  • Hammons RO (1994) The origin and history of Groundnut. In: Smartt J (ed) The groundnut crop. A scientific basis for improvement. Chapman & Hall, London, pp 24–42

    Google Scholar 

  • Hapsoro D, Aswidinnoor H, Jumanto Suseno R, Sudarsono J (2007) Resistance to peanut stripe virus (PStV) in transgenic peanuts (Arachis hypogaea L.) carrying PStV cp gene was stable up to seven generations of selfing. Biota 12:83–91

    Google Scholar 

  • Hapsoro D, Aswidinnoor H, Suseno R, Sudarsono J (2005) Agrobacterium-mediated transformation of peanuts (Arachis hypogaea L.) with PStV cp gene. J Trop Agric 10:85–93

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Haro RJ, Baldessari J, Otegui ME (2013) Genetic improvement of peanut in Argentina between 1948 and 2004: seed yield and its components. Field Crops Res 149:76–86

    Article  Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Courtois B, van der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Higgins BB (1951) Origin and early history of the peanut. The Peanut- The Unpredictable Legume. Nat Fert Assoc, Washington DC, pp 118–127

    Google Scholar 

  • Higgins CM, Hall RM, Mitter N, Cruikshank A, Dietzen RG (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res 13:59–67

    Article  CAS  PubMed  Google Scholar 

  • Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci 33:859–861

    Article  Google Scholar 

  • Holbrook CC, Kvien CK, Ruker KS, Wilson DM, Hook JE, Matheron ME (2000a) Preharvest aflatoxin contamination in drought-tolerant and drought-intolerant peanut genotypes. Peanut Sci 27:45–48

    Article  CAS  Google Scholar 

  • Holbrook CC, Noe JP (1992) Resistance to the peanut root-knot nematode (Meloidogyne arenaria) in Arachis hypogaea. Peanut Sci 19:35–37

    Article  Google Scholar 

  • Holbrook CC, Timper P, Culbreath AK (2003) Resistance to tomato spotted wilt virus and root-knot nematode in peanut interspecific breeding lines. Crop Sci 43:1100–1113

    Article  Google Scholar 

  • Holbrook CC, Timper P, Xue HQ (2000b) Evaluation of the core collection approach for identifying resistance to Meloidogyne arenaria in peanut. Crop Sci 40:1172–1175

    Article  Google Scholar 

  • Holbrook CC, Wilson DM, Matheron ME, Hunter JE, Knauft DA, Gorbet DW (2000c) Aspergillus colonization and aflatoxin contamination in peanut genotypes with reduced linoleic acid composition. Plant Dis 84:148–150

    Article  CAS  Google Scholar 

  • Holley RH, Wynne JC, Campbell WV, Isleib TG (1985) Combining ability for insect resistance in peanuts. Olėagineux 40:203–207

    Google Scholar 

  • Hong Y, Chen Y, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B (2010) A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:10–17

    Article  CAS  Google Scholar 

  • Huang BY, Zhang XY, Miao LJ, Yan Z, Hai Y, Yi ML, Xu J, Chen ZK (2008) RNAi transformation of Ah FAD2 gene and fatty acid analysis of transgenic seeds. Chin J Oil Crop Sci 30:290–293

    CAS  Google Scholar 

  • Huang L, Jiang H, Ren X, Chen Y, Xiao Y, Zhao X Tang M, Huang J, Upadhyaya HD, Liao B (2012) Abundant microsatellite diversity and oil content in wild Arachis species. PLoS ONE 7 (11):e50002

    Google Scholar 

  • Huang L, Zhao X, Zhang W, Fan Z, Ren X, Liao B, Jiang H, Chen Y (2011) Identification of SSR markers linked to oil content in peanut (Arachis hypogaea L.) through RIL population and natural population. Acta Agron Sinica 37:1967–1974

    Article  CAS  Google Scholar 

  • Husain F, Mallikarjuna N (2012) Genetic diversity in Bolivian landrace lines of groundnut (Arachis hypogaea L.). Ind J Genet. Plant Breed 72(3):384–389

    Google Scholar 

  • IBPGR/ICRISAT (1992) Groundnut descriptors. IBPGR Descriptors Series, IBPGR, Rome and ICRISAT, Patancheru, 125 pp

    Google Scholar 

  • Janila P, Nigam SN (2013) Phenotyping for groundnut (Arachis hypogaea L.) improvement. In: Panguluri SK, Kumar AA (eds) Phenotyping for plant breeding: applications of phenotyping methods for crop improvement. Springer Science + Business Media, New York, pp 129–167

    Google Scholar 

  • Jayalakshmi V, Rajareddy C, Reddy PV, Nageswar Rao RC (1999) Genetic analysis of carbon isotope discrimination and specific leaf area in groundnut (Arachis hypogaea L.). J Oilseeds Res 16:1–5

    Google Scholar 

  • Jiang H, Ren X, Chen Y, Huang L, Zhou X, Huang J, Froenicke L, Yu J, Guo B, Liao B (2013) Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genet Resour 11(01):77–83

    Article  Google Scholar 

  • Jiang H, Ren X, Shou Liao B, Huang J, Chen Y (2007) Establishment of peanut core collection in China. Wuhan Zhiwuxue Yanjiu 25(3):289–293

    Google Scholar 

  • Jiang H, Ren X, Liao B, Huang J, Lei Y, Chen B, Guo B, Holbrook CC, Upadhyaya HD (2008) Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin 34:25–30

    CAS  Google Scholar 

  • Khalfaoui JLB (1991) Inheritance of seed dormancy in a cross between two Spanish peanut cultivars. Peanut Sci 18:65–67

    Article  Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauft DA, Moore KM, Gorbet DW (1993) Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci 20:74–76

    Article  CAS  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  PubMed  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopez CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Sci 47(4):1718–1727

    Article  CAS  Google Scholar 

  • Krapovickas A (1969) The origin, variability and spread of the groundnut (Arachis hypogaea) (English translation by Smartt J) In: Ucko RJ, Dimbledy CW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 427–441

    Google Scholar 

  • Krapovickas A, Rigoni VA (1951) Estudios citológicos en el género Arachis. Revista Invest Agríc 5(3):289–293

    Google Scholar 

  • Krapovikas A, Gregory WC (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia VIII:1-187. (In Spanish). (English translation by Williams DE, Simpson CE 2007). Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16 (suppl):1–205

    Google Scholar 

  • Li ZJ, Jarret RL, Demski JW (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nulceocapsid gene. Transgenic Res 6:297–305

    Article  CAS  Google Scholar 

  • Liang X, Zhou G, Hong Y, Chen X, Liu H, Li S (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong Academy of Agricultural Sciences. Peanut Sci 36:29–34

    Article  Google Scholar 

  • Liao BS, Li WR, Sun DR (1986) A study on inheritance of resistance to Pseudomonas solanacearum E.F. Smith in Arachis hypogaea L. Oil Crops China 3:1–8

    Google Scholar 

  • Lopez Y, Smith OD, Senseman SA, Rooney WL (2001) Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci 41:51–56

    Article  CAS  Google Scholar 

  • Lu M, Liang XQ, Dang P, Holbrook CC, Bausher MG, Lee RD, Guo BZ (2005) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703

    Article  CAS  Google Scholar 

  • Lynch RE (1990) Resistance in peanut to major arthropod pests. Florida Entomologist 73:422–445

    Article  Google Scholar 

  • Magbanua ZV, Wilde HD, Roberts JK, Chowdhury K, Abad J, Moyer JW, Wetzstein HY, Parrott WA (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol Breed 6:227–236

    Article  CAS  Google Scholar 

  • Mallikarjuna N (2005) Production of hybrids between Arachis hypogaea and A. chiquitana (section Proccumbentes). Peanut Sci 32(2):148–152

    Google Scholar 

  • Mallikarjuna N, Hoisington DA (2009) Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Secur 1(4):457–462

    Article  Google Scholar 

  • Mallikarjuna N, Pande S, Jadhav DR, Sastri DC, Rao JN (2004) Introgression of disease resistance genes from Arachis kempff-mercadoi into cultivated groundnut. Plant Breed 123(6):573–576

    Google Scholar 

  • Mallikarjuna N, Sastri DC (2002) Morphological, cytological and disease resistance studies of the intersectional hybrid between Arachis hypogaea L. and A. glabrata Benth. Euphytica 126(2):161–167

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Senthilvel S, Hoisington DA (2011) Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genet Res Crop Evol 58(6):889–907

    Google Scholar 

  • Mallikarjuna N, Tandra SK, Jadhav DR (2006) Arachis hoehnei the probable B genome donor of Arachis hypogaea based on crossability, cytogenetical and molecular studies. J SAT Agri Res 2(1):1–2

    Google Scholar 

  • Manjunatha SB, Suma TC, Sreevathsa R, Devendra R, Udayakumar M, Prasad TG (2008) Evaluation of advanced generation transgenic groundnut lines resistant to herbicide-glyphosate. Ind J Weed Sci 40:162–165

    Google Scholar 

  • Mehan VK, Liao BS, Tan YJ, Robinson-Smith A, McDonald D, Hayward AC (1994) Bacterial wilt of groundnut. Information Bulletin no. 35. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, 28 pp

    Google Scholar 

  • Mehan VK, Mayee CD, Brenneman TB, McDonald D (1995) Stem and pod rots of groundnut. Information Bulletin no. 44. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India; Peanut Collaborative Research Support Program, Griffin, GA, USA, 28 pp

    Google Scholar 

  • Mehan VK, Reddy DDR, McDonald D (1993) Resistance in groundnut genotypes to Kalahasti malady caused by the stunt nematode, Tylenchorhynchus brevilineatus. Int J Pest Manag 39:201–203

    Article  Google Scholar 

  • Mienie CMS, Pretorius AE (2013) Application of marker-assisted selection for ahFAD2A and ah FAD2B genes governing high oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). Afr J Biotechnol 12:283–289

    Article  CAS  Google Scholar 

  • Milla SR, Isleib TG, Tallury SP (2005) Identification of AFLP markers linked to reduced aflatoxin accumulation in A. cardenasii-derived germplasm lines of peanut. Proc Am Peanut Res Educ Soc Inc 37: 90

    Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2012) Development of genic molecular marker linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 188:163–173

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM, Murty SSS (2008) RAPD markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 159:233–239

    Article  CAS  Google Scholar 

  • Mondal S, Hadapad AB, Hande PA, Badignnavar AM (2014) Identification of quantitative trait loci for bruchid (Caryedon serratus L.) resistance components in cultivated groundnut (Arachis hypogaea L.). Mol Breed 33:961–973

    Article  CAS  Google Scholar 

  • Moore KM, Knauft DA (1989) The inheritance of high oleic acid in peanut. J Heredity 80:252–253

    Google Scholar 

  • Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Teixeira C, Leal-Bertioli SCM, Guimarăes PM, Pereira R, Lopez CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA (2009) A linkage map for the B genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moretzsohn MC, Leoi L, Procite K, Guimarăes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SC, Valls JFM, Bertioli DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111(1):113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss JP, Singh AK, Nigam SN, Hildebrand GL, Govinden N, Ismael FM, Subrahmanyam P, Reddy LJ (1998) Registration of ICGV-SM 86715 Peanut Germplasm. Crop Sci 38:572

    Article  Google Scholar 

  • Moss JP, Singh AK, Reddy LJ, Nigam SN, Subrahmanyam P, McDonald D, Reddy AGS (1997) Registration of ICGV 87165 peanut germplasm line with multiple resistances. Crop Sci 37:1028

    Article  Google Scholar 

  • Moss JP, Singh AK, Subrahmanyam P, Hildebrand GL, Murant AF (1993) Transfer of resistance to groundnut rosette disease from a wild Arachis species into cultivated groundnut. Int Arachis Newslett 13:22–23

    Google Scholar 

  • Mozingo RW, Coffelt TA, Wynne JC (1987) Genetic improvement in large-seeded Virginia-type peanut cultivars since 1944. Crop Sci 27:228–231

    Google Scholar 

  • Murthy TGK, Reddy PS (eds) (1993) Genetics of groundnuts. In: Cytogenetics and genetics of groundnuts. Antercept, Andover, UK, pp 144–268

    Google Scholar 

  • Nageswar Rao RC, Nigam SN (2001) Genetic options for drought management in groundnut. In: Saxena NP (ed) Management of agricultural drought: agronomic and genetic options. Oxford and IBH, New Delhi, pp 123–141

    Google Scholar 

  • Nageswar Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf N in peanut (Arachis hypogaea L.) using chlorophyll meter. J Agron Crop Sci 189:175–182

    Article  Google Scholar 

  • Nageswar Rao RC, Williams JH, Singh M (1989) Genotypic sensitivity to drought and yield potential of peanut. Agron J 81:887–893

    Article  Google Scholar 

  • Nageswar Rao RC, Wright GC (1994) Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci 34:98–103

    Article  Google Scholar 

  • Naidu PH, Moses GJ (2000) Identification and evaluation of sources of resistance to Kalahasti malady in groundnut. Ind Phytopath 53:395–398

    Google Scholar 

  • Nautiyal PC, Bandyopadhyay A, Zala PV (2001) In situ sprouting and regulation of fresh seed dormancy in Spanish type groundnut (Arachis hypogaea L.). Field Crops Res 70:233–241

    Article  Google Scholar 

  • Nautiyal PC, Ravindra V, Bandyopadhyay A (1994) Peanut seed dormancy. ACIAR- Food Legumes Newslett 22:2

    Google Scholar 

  • Nigam SN, Aruna R (2008a) Stability of Soil Plant Analytical Development (SPAD) Chlorophyll Meter Reading (SCMR) and specific leaf area (SLA) and their association across varying soil moisture stress conditions in groundnut (Arachis hypogaea L.). Euphytica 160:111–117

    Article  CAS  Google Scholar 

  • Nigam SN, Aruna R (2008b) Improving breeding efficiency for early maturity in peanut. Plant Breed Rev 30:295–322

    CAS  Google Scholar 

  • Nigam SN, Bock KR (1990) Inheritance of resistance to groundnut rosette virus in groundnut (Arachis hypogaea L.). Ann Appl Biol 117:553–560

    Article  Google Scholar 

  • Nigam SN, Chandra S, Sridevi KR, Bhukta M, Reddy AGS, Rao RCN, Wright GC, Reddy PV, Deshmukh MP, Mathur RK, Basu MS, Vasundhara S, Varman PV, Nagda AK (2005) Efficiency of physiology trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146:433–439

    Article  Google Scholar 

  • Nigam SN, Dwivedi SL, Gibbons RW (1991) Groundnut breeding: constraints, achievements and future possibilities. Plant Breed Abst 61:1127–1136

    Google Scholar 

  • Nigam SN, Nageswar Rao RC, Wright GC (2003) Breeding for increased water-use efficiency in groundnut. In: Rai M, Singh H, Hegde DM (eds) National seminar on stress management in oilseeds for attaining self-reliance in vegetable oils: thematic papers. Directorate of Oilseed Research, Rajendranagar, Hyderabad, AP, India, pp 305–318

    Google Scholar 

  • Nigam SN, Nageswara Rao RC, Wynne JC, Williams JH, Fitzner M, Nagabhushanam GVS (1994) Effect and interaction of temperature and photoperiod on growth and partitioning in three groundnut (Arachis hypogaea L.) genotypes. Ann Appl Biol 125:541–552

    Article  Google Scholar 

  • Nigam SN, Prasada Rao RDVJ, Bhatnagar-Mathur P, Sharma KK (2012) Genetic management of virus diseases in peanut. Plant Breed Rev 36:293–356

    Google Scholar 

  • Nigam SN, Upadhyaya HD, Chandra S, Nageswar Rao RC, Wright GC, Reddy AGS (2001) Gene effects for specific leaf area and harvest index in three crosses of groundnut (Arachis hypogaea L.). Ann Appl Biol 139:301–306

    Article  Google Scholar 

  • Nigam SN, Waliyar F, Aruna R, Reddy SV, Lava Kumar P, Craufurd PQ, Diallo AT, Ntare BR, Upadhyaya HD (2009) Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36:42–49

    Article  Google Scholar 

  • Norden AJ, Gorbet DW, Knauft DA, Young CT (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14:7–11

    Article  CAS  Google Scholar 

  • Ntare BR, Williams JH, Dougbedji F (2001) Evaluation of groundnut genotypes for heat tolerance under field conditions in a Sahelian environment using a simple physiological model for yield. J Agric Sci 136:81–88

    Article  Google Scholar 

  • Olorunju PE, Kuhn CW, Demski JW, Misari SM, Ansa OA (1992) Inheritance of resistance in peanut to mixed infections of groundnut rosette virus (GRV) and groundnut rosette assistor virus and a single infection of GRV. Plant Dis 76:95–100

    Article  Google Scholar 

  • Olorunju PE, Ntare BR, Pande S, Reddy SV (2001) Additional sources of resistance to groundnut rosette disease in groundnut germplasm and breeding lines. Ann Appl Biol 159:259–268

    Article  Google Scholar 

  • Ouedraogo M, Smith OD, Simpson CE, Smith DH (1994) Early and late leaf spot resistance and agronomic performance of nineteen interspecific derived peanut lines. Peanut Sci 21:99–104

    Article  Google Scholar 

  • Ozias-Akins P (2007) Peanut. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, vol 61. Springer, Berlin, pp 81–105

    Google Scholar 

  • Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissinger AK (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93:185–194

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Yang P, Culbreath AK, Gorbet DW, Weeks JR (2002) Field resistance to Tomato spotted wilt virus in a transgenic peanut (Arachis hypogaea L.). Proc Am Res Educ Soc Inc 34:70

    Google Scholar 

  • Padgham DE, Kimmins FM, Ranga Rao GV (1990) Resistance in groundnut (Arachis hypogaea L.) to Aphis craccivora (Koch.). Ann Appl Biol 117:285–294

    Article  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarăes P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ. Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Google Scholar 

  • Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502

    Article  CAS  PubMed  Google Scholar 

  • Pattee HE, Isleib TG, Giesbrecht FG (1998) Variation in intensity of sweet and bitter sensory attributes across peanut genotypes. Peanut Sci 25:63–69

    Article  Google Scholar 

  • Pensuk K, Jogloy S, Wongkaew S, Patanothai A (2004) Generation means analysis of resistance to peanut bud necrosis caused by peanut bud necrosis tospovirus in peanut. Plant Breed 123:90–92

    Article  Google Scholar 

  • Pensuk K, Wongkaew S, Jogloy S, Patanothai A (2002) Combining ability for resistance in peanut (Arachis hypogaea) to peanut bud necrosis tospovirus (PBNV). Ann Appl Biol 141:143–146

    Article  Google Scholar 

  • Poledate A, Laohasiriwong S, Jaisil P, Vorasoot N, Jogloy S, Kesmala T, Patanothai A (2007) Gene effects for parameters of peanut bud necrosis virus (PBNV) resistance in peanut. Pakistan J Biol Sci 10:1501–1506

    Article  CAS  Google Scholar 

  • Prasada Rao RDVJ, Reddy AS, Chakarbarty SK, Reddy DVR, Rao VR, Moss JP (1991) Identification of Peanut Stripe Virus resistance in wild Arachis germplasm. Peanut Sci 18:1–2

    Article  Google Scholar 

  • Qin H, Gu Q, Zhang JL, Sun L, Kuppu S, Zhang YZ, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  CAS  PubMed  Google Scholar 

  • Qin HD, Feng SP, Chen C, Guo YF, Knapp S, Culbreath A, He GH, Wang ML, Zhang XY, Holbrook CC, Ozias-Akins P, Guo BZ (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664

    Article  PubMed  Google Scholar 

  • Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262

    Article  Google Scholar 

  • Rao MJV, Nigam SN, Huda AKS (1991) Use of thermal time concept in selection for earliness in peanut. Peanut Sci 19:7–10

    Article  Google Scholar 

  • Rao MJV, Nigam SN, Mehan VK, McDonald D (1989) Aspergillus flavus resistance breeding in groundnut: progress made at ICRISAT Center. In: McDonald D, Mehan VK (eds) Aflatoxin contamination of groundnut. Proc Int Workshop, 6–9 Oct 1987, ICRISAT Center. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 345–355

    Google Scholar 

  • Rathnakumar AL, Hariprasanna K, Lalwani HB (2012) Genetic improvement in Spanish type groundnut. J Oilseeds Res 27:1–7

    Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy LJ, Nigam SN, Singh AK, Moss JP, Subrahmanyam P, McDonald D, Reddy AGS (1996) Registration of ICGV 86699 peanut germplasm line with multiple disease and insect resistance. Crop Sci 36:821

    Article  Google Scholar 

  • Reddy PS, Murthy TGK (1996) Current genetic research on groundnut in India. Genetica 97:263–277

    Article  Google Scholar 

  • Reddy PS, Zade VR, Desmukh SN (1985) A new Spanish bunch groundnut cultivar with fresh seed dormancy. J Oilseed Res 2:103–106

    Google Scholar 

  • Ren X, Chen Y, Zhou X, Xia Y, Huang J, Lei Y, Yan L, Wan L, Liao B (2014) Diversity Characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol 56(2):159–169

    Google Scholar 

  • Robledo G, Seijo G (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046

    Article  PubMed  Google Scholar 

  • Sasson A (1996) Biotechnologies and the use of plant genetic resources for industrial purpose: benefits and constraints for developing countries. In: Castri F di, Younes J (eds) Biodiversity, science and development: towards a new partnership. CAB International, pp 469-487

    Google Scholar 

  • Seaton ML, Coffelt TA, Van Scoyoc SW (1992) Comparison of vegetative and reproductive traits of 14 peanut cultivars. Olėagineux 47:471–474

    Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovikas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S-25S RRNA gene by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Shan ZH, Duan NX, Jiang HF, Tan YJ, Li D, Liao BS (1998) Inheritance to bacterial wilt in Chinese dragon groundnuts. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease. Springer, Berlin, pp 300–305

    Chapter  Google Scholar 

  • Sharma KK, Anjaiah VV (2000) An efficient method for the Production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  CAS  PubMed  Google Scholar 

  • Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2012) SSR markers associated for late leaf spot disease resistance by bulk segregant analysis in groundnut (Arachis hypogaea L.). Euphytica 188:265–272

    Article  CAS  Google Scholar 

  • Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2013) Identification of quantitative trait loci (QTL) for late leaf spot disease resistance in groundnut (Arachis hypogaea L.). Legumes Res 36:467–472

    Google Scholar 

  • Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18:22–26

    Article  Google Scholar 

  • Simpson CE (2001) Use of Wild Arachis species/Introgression of Genes into A. hypogaea. Peanut Sci 28:114–116

    Article  CAS  Google Scholar 

  • Simpson CE, Krapovickas A, Valls JFM (2001) History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci 28:78–80

    Article  Google Scholar 

  • Singh AK (1985) Genetic introgression from compatible Arachis species into Groundnut. In: Proceedings of international workshop on cytogenetics of Arachis, Oct 31–Nov 2 1983. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 107–117

    Google Scholar 

  • Singh AK (1986a) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 8. Synthetic amphidiploids and their importance in interspecific breeding. Theor Appl Genet 72:433–439

    Article  CAS  PubMed  Google Scholar 

  • Singh AK (1986b) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 7. Autotetraploid production and prospects in interspecific breeding. Theor Appl Genet 72:164–169

    Article  CAS  PubMed  Google Scholar 

  • Singh AK (1988) Putative genome donors of A. hypogaea L. Evidence from cross with synthetic amphidiploids. Plant Syst Evol 160:143–153

    Article  Google Scholar 

  • Singh AK (1998) Hybridization barriers among species of Arachis L., namely of the section Arachis (including the groundnut) and Erectoides. Genet Res Crop Evol 45:41–45

    Article  Google Scholar 

  • Singh AK, Dwivedi SL, Pande S, Moss JP, Nigam SN, Sastri DC (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43(1):440–441

    Article  Google Scholar 

  • Singh AK, Gibbons RW (1985) Wild species in crop improvement: groundnut—A case study. In: Gupta PK, Bahl JR (eds) Advances in genetics and crop improvement. Rastogi Publication, Meerut, pp 297–308

    Google Scholar 

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal. Information Bulletin no. 50. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, 48 pp

    Google Scholar 

  • Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2. Chromosome complement of species in section Arachis. Theor Appl Genet 61:305–314

    CAS  PubMed  Google Scholar 

  • Singh AK, Moss JP (1984a) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. VI. Fertility in triploids: cytological basis and breeding implications. Peanut Sci 11:17–21

    Article  Google Scholar 

  • Singh AK, Moss JP (1984b) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 5. Genome analysis in section Arachis and its implications in gene transfer. Theor Appl Genet 68:355–364

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Nigam SN (1996) Gains in groundnut productivity illustrates success of resistance breeding based on exotic germplasm. Diversity 12:59–60

    Google Scholar 

  • Singh AK, Nigam SN (1997) Groundnut In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust—conservation and use of plant genetic resources in CGIAR center. Cambridge University Press Cambridge UK, pp 113–124

    Google Scholar 

  • Singh AK, Sastri DC, Moss JP (1980) Utilization of wild Arachis species at ICRISAT. In: ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) Proceedings of the international groundnut workshop (13–17 Oct 1980), Patancheru, AP, India, pp 82–90

    Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematic and Genetic Resources. In: Smartt J (ed) The groundnut crop. A scientific basis for improvement. Chapman and Hall, London, pp 96–138

    Chapter  Google Scholar 

  • Singh AK, Sivaramakrishnan S, Mengesha MH, Ramaiah CD (1991) Phylogenetic relationships in section Arachis based on seed protein profile. Theor Appl Genet 82:593–597

    CAS  PubMed  Google Scholar 

  • Singh AK, Smartt J (1998) The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet Res Crop Evol 45:113–118

    Article  Google Scholar 

  • Singh AK, Stalker HT, Moss JP (1990) Cytogenetics and use of alien genetic variation in groundnut (Arachis) improvement. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding & evolution. Elsevier, Amsterdam, pp 65–77

    Google Scholar 

  • Singh AK, Subrahmanyam P, Gurtu S (1996) Variation in a wild groundnut species, Arachis duranensis Krapov. & W.C. Gregory. Genet Res Crop Evol 43:135–142

    Article  Google Scholar 

  • Singh AL, Hariprasanna K, Chaudhary V, Gor HK, Chikani BM (2010) Identification of groundnut (Arachis hypogaea L.) cultivars tolerant of soil salinity. J Plant Nutr 33:1761–1776

    Article  CAS  Google Scholar 

  • Singh AL, Hariprassana K, Solanki RM (2008) Screening and selection of groundnut genotypes for tolerance of soil salinity. Aust J Crop Sci 1:69–77

    CAS  Google Scholar 

  • Singh Anurudh K, Smartt J, Rakesh Singh (2004) Variation studies in a wild groundnut species, Arachis stenosperma Krapov. & W.C. Gregory nov. sp. Plant Genet Resour 2:99–106

    Article  Google Scholar 

  • Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau C, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cry1A(c) gene in transgenetic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6:169–176

    Article  CAS  PubMed  Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources, 2nd edn. Cambridge University, Cambridge, 531 pp

    Google Scholar 

  • Smartt JS, Gregory WC (1967) Interspecific crosscompatibility between the cultivated peanut Arachis hypogaea L. and other members of the genus Arachis. Oléagineux 22(7):455–459

    Google Scholar 

  • Smartt JS, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675

    Article  Google Scholar 

  • Songsri P, Jogloy S, Kesmala T, Vorasoot N, Akkasaeng C, Patonothai A, Holbrook CC (2008a) Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci 48:2245–2253

    Article  Google Scholar 

  • Songsri P, Jogloy S, Vorasoot N, Akkasaeng C, Patonothai A, Holbrook CC (2008b) Root distribution of drought-resistant peanut genotypes in response to drought. J Agron Crop Sci 194:92–103

    Article  Google Scholar 

  • Srikanth S, Shilpa K, Jadhav D, Satyanarayana T, Mallikarjuna N (2012) Meiotic study of three synthesized tetraploid groundnut. Ind J Genet Plant Breed 72(3):332–335

    Google Scholar 

  • Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78(5):630–637

    Article  Google Scholar 

  • Stalker HT, Moss JP (1987) Speciation, cytogenetics and utilization of Arachis species. Adv Agron 41:1–40

    Article  Google Scholar 

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123

    Article  CAS  Google Scholar 

  • Subrahmanyam P, Hildebrand GL, Naidu RA, Reddy LR, Singh AK (1998) Sources of resistance to groundnut rosette disease in global groundnut germplasm. Ann Appl Biol 132:473–485

    Article  Google Scholar 

  • Sunkara S, Bhatnagar-Mathur P, Sharma KK (2013) Transgenic interventions in peanut crop improvement: progress and prospects. In: Mallikarjuna N, Varshney RK (eds) Genetics, Genomics and Breeding of peanuts. CRC Press, Taylor and Francis, Boca Raton, Florida, pp 179–216

    Google Scholar 

  • Taliansky ME, Robinson DJ, Murant AF (1996) Complete nucleotide sequence and organization of the RNA genome of groundnut rosette umbravirus. J Gen Virol 77:2335–2345

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002a) Developing a minicore of peanut for utilization of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Upadhyaya HD, Mallikarjuna Swamy BP, Kenchana Goudar PV, Kullaiswamy BY, Singh S (2005) Identification of diverse groundnut germplasm through multienvironment evaluation of a core collection for Asia. Field Crops Res 93:293–299

    Article  Google Scholar 

  • Upadhyaya HD, Nigam SN (1999) Inheritance of fresh seed dormancy in peanut. Crop Sci 39:98–101

    Article  Google Scholar 

  • Upadhyaya HD, Nigam SN, Mehan VK, Lenne JM (1997a) Aflatoxin contamination of groundnut- prospects of a genetic solution through conventional breeding. In: Mehan VK, Gowda CLL (eds) Aflatoxin contamination problems in groundnut in Asia: proceedings of the first working group meeting, 27–29 May 1996. Ministry of Agriculture and Rural Development, Hanoi, Vietnam, ICRISAT, Patancheru, India, pp 81–85

    Google Scholar 

  • Upadhyaya HD, Nigam SN, Rao MJV, Reddy AGS, Yellaiah N, Reddy NS (1997b) Registration of five Spanish peanut germplasm with fresh seed dormancy. Crop Sci 37:1027

    Article  Google Scholar 

  • Upadhyaya HD, Nigam SN, Thakur RP (2002b) Genetic enhancement for resistance to aflatoxin contamination in groundnut In: Summary Proc of the seventh ICRISAT regional groundnut meeting for Western and Central Africa, 6-8 December 2000, Cotonou, Benin. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 29–36

    Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Res Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Reddy LJ, Gowda CLL, Singh S (2006) Identification of diverse groundnut germplasm: sources of early maturity in a core collection. Field Crops Res 97(2–3):261–271

    Article  Google Scholar 

  • Upadhyaya HD Sharma S and Dwivedi SL (2011) Arachis. In: Kole C (ed) Wild crop relatives: genomics and breeding resources, Legume Crops and Forages. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Upadhyaya HD, Yadav D, Dronavalli N, Gowda CLLL, Singh S (2010) Minicore germplasm collection for infusing genetic diversity in plant breeding program. Electr J Plant Breed 1(4):1294–1309

    Google Scholar 

  • Valls JFM, Ramanatha Rao V, Simpson CE and Krapovickas A (1985) Current status of collection and conservation of South American groundnut germplasm with emphasis on wild species of Arachis. In: Proceedings of international workshop on cytogenetics of Arachis, Oct 31–Nov 2 1983. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 15–35

    Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14(1–2):35–63

    Google Scholar 

  • Varma TSN, Dwivedi SL, Pande S, Gowda MVC (2005) SSR markers associated with resistance to rust (Puccinia arachidis Speg.) in groundnut (Arachis hypogaea L.). SABRAO J Breed Genet 37:107–119

    Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739

    Article  CAS  PubMed  Google Scholar 

  • Waliyar F, Kumar PL, Ntare BR, Monyo E, Nigam SN, Reddy AS, Osiru M, Diallo AT (2007) A century of research on groundnut rosette disease and its management. Information Bulletin no. 75. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, 40 pp

    Google Scholar 

  • Wang M, Abbott D, Waterhouse PM (2000) A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Path 1:401–410

    Article  Google Scholar 

  • Weber JL (1990) Informativeness of huan (dC-dA) (dG-dT) in polymorphism. Genomics 7:524–530

    Article  CAS  PubMed  Google Scholar 

  • Wells R, Bi T, Anderson WF, Wynne JC (1991) Peanut yield as a result of fifty years of breeding. Agron J 83:957–961

    Article  Google Scholar 

  • Wightman JA, Ranga Rao GV (1994) Groundnut pests. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 395–479

    Chapter  Google Scholar 

  • Wildman LG, Smith OD, Simpson CE, Taber RA (1992) Inheritance of resistance to Sclerotinia minor in selected Spanish peanut crosses. Peanut Sci 19:31–35

    Article  Google Scholar 

  • Williams ED (1991) Exploration of Amozonian Bolivia yields rare peanut landraces. Diversity 5:12–13

    Google Scholar 

  • Williams JH, Boote KJ (1995) Physiology and modeling-predicting the unpredictable legume. In: Pattee HE, Stalker HT (eds) Advances in peanut science. Am Peanut Res Educ Soc Stillwater 301–353

    Google Scholar 

  • Wright GC, Nageswar Rao RC, Basu MS (1996) A physiological approach to the understanding of genotype by environment interactions—A case study on improvement of drought adaptation in peanut. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 365–381

    Google Scholar 

  • Wright GC, Nageswar Rao RC, Farquhar GD (1994) Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97

    Article  Google Scholar 

  • Xue HQ, Isleib TG, Payne GA, Novitzky WF, OBrian G (2005) Aflatoxin production in peanut lines selected to represent a range of linoleic acid concentrations. J Food Protect 68:126–132

    Google Scholar 

  • Yang H, Singcit C, Wang A, Gonsalves D, Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergence levels of gene expression. Plant Cell Rep 17:693–699

    Article  CAS  Google Scholar 

  • Yaw AJ, Richard A, Safo-Kantanka O, Adu-Dapaah HK, Ohemeng-Dapaah S, Agyeman A (2008) Inheritance of fresh seed dormancy in groundnut. Afr J Biotechnol 7:421–424

    Google Scholar 

  • Yin DM, Tang HT, Tai GQ, Yang QY, Cui DQ (2009) Expression analysis and establishment of regeneration system of oleate desaturase gene in peanut. Scientia Agricultura Sinica 42:1827–1832

    CAS  Google Scholar 

  • Zhang XQ, Shan L, Tang GY, Teng N, Bi YP (2007) Transformation of RNAi suppressed expression vector containing of Δ12 fatty acid desaturase gene via Agrobacterium infection in peanut (Arachis hypogaea L.). Chin J Oil Crop Sci 29:409–415

    CAS  Google Scholar 

  • Zhou GY, Liang XQ (2002) Analysis of major-minor genes related to resistance to infection by Aspergillus flavus in peanut. J Peanut Sci 31:11–14

    Google Scholar 

  • Zhou GY, Liang XQ, Li YC, Li XC, Li SL (1999) Evaluation and application of introduced peanut cultivars for resistance to Aspergillus flavus invasion. J Peanut Sci 32:14–17

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. C. E. Simpson, Professor Emeritus, Texas A & M University, Experimental Agricultural Station, Stephenville, USA for sharing literature and information on germplasm holdings and staff of JS Kanwar Library, ICRISAT, India for providing access to literature as and when requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurudh K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, A.K., Nigam, S.N. (2016). Arachis Gene Pools and Genetic Improvement in Groundnut. In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-27096-8_2

Download citation

Publish with us

Policies and ethics