Skip to main content

The STIM1: Orai Interaction

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Abstract

Ca2+ influx via store-operated Ca2+ release activated Ca2+ (CRAC) channels represents a main signalling pathway for a variety of cell functions, including T-cell activation as well as mast-cell degranulation. Depletion of [Ca2+]ER results in activation of Ca2+ channels within the plasmamembrane that mediate sustained Ca2+ influx which is required for refilling Ca2+ stores and down-stream Ca2+ signalling. The CRAC channel is the best characterized store-operated channel (SOC) with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel have been defined. The ER – located Ca2+-sensor, STIM1 and the Ca2+-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca2+]ER and activates the CRAC channel upon store depletion by direct binding to Orai1 in the plasmamembrane. The identification of STIM1 and Orai1 and recently the structural resolution of both proteins by X-ray crystallography and nuclear magnetic resonance substantiated many findings from structure-function studies which has substantially improved the understanding of CRAC channel activation. Within this review, we summarize the functional and structural mechanisms of CRAC channel regulation, present a detailed overview of the STIM1/Orai1 signalling pathway where we focus on the critical domains mediating interactions and on the ion permeation pathway. We portray a mechanistic view of the steps in the dynamics of CRAC channel signalling ranging from STIM1 oligomerization over STIM1-Orai1 coupling to CRAC channel activation and permeation.

Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-APB:

2-Aminoethoxydiphenyl borate

Å:

Angstrom

Ca2+ :

Calcium

CAD:

CRAC activating domain

CC:

Coiled coil

CCb9:

Coiled coil containing region b9

CCE:

Capacitative calcium entry

CDI:

Calcium dependent inactivation

CFP:

Cyan fluorescent protein

CMD:

CRAC modulatory domain

CRAC:

Calcium release activated calcium

Cs+ :

Caesium

dOrai:

Drosophila melanogaster Orai

ER:

Endoplasmic reticulum

Et al:

Et alii

ETON:

Extended transmembrane Orai1 N-terminal region

FRET:

Förster resonance energy transfer

IH:

Inhibitory helix

IP3 :

Inositol(1,4,5)triphosphate

K-rich:

Lysine rich

Na+ :

Sodium

NMR:

Nuclear magnetic resonance

OASF:

Orai activating small fragment

PLC:

Phospholipase C

PM:

Plasmamembrane

RNAi:

Interference ribonucleic acid

SAM:

Sterile alpha motif

SCID:

Severe combined immunodeficiency

SERCA:

Sarcoplasmic/endoplasmic reticulum calcium ATPase

SHD:

STIM1 homomerization domain

SOAP:

STIM/Orai association pocket

SOAR:

STIM/Orai activating region

SOCE:

Store operated calcium entry

STIM:

Stromal interaction molecule

TG:

Thapsigargin

TM:

Transmembrane

TRP:

Transient receptor potential

YFP:

Yellow fluorescent protein

References

  1. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  2. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albert AP, Saleh SN, Peppiatt-Wildman CM, Large WA (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583(Pt 1):25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prakriya M (2009) The molecular physiology of CRAC channels. Immunol Rev 231(1):88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    Article  CAS  PubMed  Google Scholar 

  6. McFadzean I, Gibson A (2002) The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol 135(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mogami H, Nakano K, Tepikin AV, Petersen OH (1997) Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88(1):49–55

    Article  CAS  PubMed  Google Scholar 

  8. Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1(1):99–112

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90(13):6295–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    Article  CAS  PubMed  Google Scholar 

  12. Kuno M, Gardner P (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326(6110):301–304

    Article  CAS  PubMed  Google Scholar 

  13. Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA (2015) Functional and physiopathological implications of TRP channels. Biochim Biophys Acta 1853(8):1772–1782

    Article  CAS  PubMed  Google Scholar 

  14. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  17. Zhang SL, Yeromin AV, Zhang XHF, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci 103(24):9357–9362. doi:10.1073/pnas0603161103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  19. Hogan PG, Rao A (2007) Dissecting I(CRAC), a store-operated calcium current. Trends Biochem Sci 32:235–245

    Article  CAS  PubMed  Google Scholar 

  20. Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454(7203):538–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feske S, Skolnik EY, Prakriya M (2012) Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 12(7):532–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231(1):59–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13(9):549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kar P, Nelson C, Parekh AB (2012) CRAC channels drive digital activation and provide analog control and synergy to Ca(2+)-dependent gene regulation. Curr Biol 22(3):242–247

    Article  CAS  PubMed  Google Scholar 

  25. Di Capite J, Parekh AB (2009) CRAC channels and Ca2+ signaling in mast cells. Immunol Rev 231(1):45–58

    Article  PubMed  Google Scholar 

  26. Pores-Fernando AT, Zweifach A (2009) Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Immunol Rev 231(1):160–173

    Article  CAS  PubMed  Google Scholar 

  27. Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  CAS  PubMed  Google Scholar 

  28. Stathopulos PB, Ikura M (2009) Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry. Immunol Rev 231(1):113–131

    Article  CAS  PubMed  Google Scholar 

  29. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baba Y, Hayashit K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 103(45):16704–16709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M (2008) STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 586(Pt 22):5383–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu P, Lu J, Li Z, Yu X, Chen L, Xu T (2006) Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem Biophys Res Commun 350(4):969–976

    Article  CAS  PubMed  Google Scholar 

  33. Hoth M, Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 71:237–271

    Article  CAS  PubMed  Google Scholar 

  34. Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174(6):803–813. doi:10.1083/jcb200604014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135(1):110–122

    Article  CAS  PubMed  Google Scholar 

  36. Smyth JT, Dehaven WI, Bird GS, Putney JW Jr (2008) Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J Cell Sci 121(Pt 6):762–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H (2002) The Ca(V)2.3 Ca(2+) channel subunit contributes to R-type Ca(2+) currents in murine hippocampal and neocortical neurones. J Physiol 542(Pt 3):699–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174(6):815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283(12):8014–8022

    Article  CAS  PubMed  Google Scholar 

  40. Malli R, Naghdi S, Romanin C, Graier WF (2008) Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J Cell Sci 121(Pt 19):3133–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104(22):9301–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T (2008) Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 9(1):81–88

    Article  CAS  PubMed  Google Scholar 

  43. Stathopulos PB, Li G-Y, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of STIM1 via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862. doi:10.1074/jbcM608247200:M608247200

    Article  CAS  PubMed  Google Scholar 

  44. Stathopulos PB, Ikura M (2010) Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. Biochem Cell Biol 88(2):175–183

    Article  CAS  PubMed  Google Scholar 

  45. Covington ED, Wu MM, Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21(11):1897–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca(2+) levels. Cell 131(7):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng L, Stathopulos PB, Li GY, Ikura M (2008) Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369(1):240–246

    Article  CAS  PubMed  Google Scholar 

  48. Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci U S A 108(4):1337–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  50. Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284(13):8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385(1):49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109(15):5657–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muik M, Fahrner M, Schindl R, Stathopulos P, Frischauf I, Derler I, Plenk P, Lackner B, Groschner K, Ikura M, Romanin C (2011) STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30(9):1678–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fahrner M, Muik M, Schindl R, Butorac C, Stathopulos P, Zheng L, Jardin I, Ikura M, Romanin C (2014) A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1). J Biol Chem 289(48):33231–33244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gudlur A, Zhou Y, Hogan PG (2013) STIM-ORAI interactions that control the CRAC channel. Curr Top Membr 71:33–58

    Article  CAS  PubMed  Google Scholar 

  58. Cui B, Yang X, Li S, Lin Z, Wang Z, Dong C, Shen Y (2013) The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PLoS One 8(9):e74735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3(148):ra82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu F, Sun L, Hubrack S, Selvaraj S, Machaca K (2013) Intramolecular shielding maintains the ER Ca(2)(+) sensor STIM1 in an inactive conformation. J Cell Sci 126(Pt 11):2401–2410

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Y, Srinivasan P, Razavi S, Seymour S, Meraner P, Gudlur A, Stathopulos PB, Ikura M, Rao A, Hogan PG (2013) Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20(8):973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nesin V, Wiley G, Kousi M, Ong EC, Lehmann T, Nicholl DJ, Suri M, Shahrizaila N, Katsanis N, Gaffney PM, Wierenga KJ, Tsiokas L (2014) Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A 111(11):4197–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morin G, Bruechle NO, Singh AR, Knopp C, Jedraszak G, Elbracht M, Bremond-Gignac D, Hartmann K, Sevestre H, Deutz P, Herent D, Nurnberg P, Romeo B, Konrad K, Mathieu-Dramard M, Oldenburg J, Bourges-Petit E, Shen Y, Zerres K, Ouadid-Ahidouch H, Rochette J (2014) Gain-of-function mutation in STIM1 (P.R304W) is associated with Stormorken syndrome. Hum Mutat 35(10):1221–1232

    Article  CAS  PubMed  Google Scholar 

  64. Misceo D, Holmgren A, Louch WE, Holme PA, Mizobuchi M, Morales RJ, De Paula AM, Stray-Pedersen A, Lyle R, Dalhus B, Christensen G, Stormorken H, Tjonnfjord GE, Frengen E (2014) A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 35(5):556–564

    Article  CAS  PubMed  Google Scholar 

  65. Stathopulos PB, Ikura M (2013) Structure and function of endoplasmic reticulum STIM calcium sensors. Curr Top Membr 71:59–93

    Article  CAS  PubMed  Google Scholar 

  66. Furukawa Y, Teraguchi S, Ikegami T, Dagliyan O, Jin L, Hall D, Dokholyan NV, Namba K, Akira S, Kurosaki T, Baba Y, Standley DM (2014) Intrinsic disorder mediates cooperative signal transduction in STIM1. J Mol Biol 426(10):2082–2097

    Article  CAS  PubMed  Google Scholar 

  67. Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y, Bhanumathy CD, Subbiah R, Ritchie MF, Soboloff J, Baba Y, Kurosaki T, Joseph SK, Gill DL, Madesh M (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190(3):391–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiao B, Coste B, Mathur J, Patapoutian A (2011) Temperature-dependent STIM1 activation induces Ca(2+) influx and modulates gene expression. Nat Chem Biol 7:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mancarella S, Wang Y, Gill DL (2011) Signal transduction: STIM1 senses both Ca(2)+ and heat. Nat Chem Biol 7(6):344–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou Y, Mancarella S, Wang Y, Yue C, Ritchie M, Gill DL, Soboloff J (2009) Short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. J Biol Chem 284:19164–19168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284(2):728–732

    Article  CAS  PubMed  Google Scholar 

  72. Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JW Jr (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281(30):20661–20665

    Article  CAS  PubMed  Google Scholar 

  74. Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS, Dziadek MA, Gill DL (2006) STIM2 is an inhibitor of STIM1-mediated store-operated Ca(2+) entry. Curr Biol 16(14):1465–1470

    Article  CAS  PubMed  Google Scholar 

  75. Wang X, Wang Y, Zhou Y, Hendron E, Mancarella S, Andrake MD, Rothberg BS, Soboloff J, Gill DL (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5:3183

    PubMed  PubMed Central  Google Scholar 

  76. Ong HL, de Souza LB, Zheng C, Cheng KT, Liu X, Goldsmith CM, Feske S, Ambudkar IS (2015) STIM2 enhances receptor-stimulated Ca(2)(+) signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Sci Signal 8(359):ra3

    Article  PubMed  CAS  Google Scholar 

  77. Mercer JC, DeHaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281(34):24979–24990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8(7):771–773

    Article  CAS  PubMed  Google Scholar 

  79. DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282(24):17548–17556

    Article  CAS  PubMed  Google Scholar 

  80. Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17(9):794–800

    Article  CAS  PubMed  Google Scholar 

  81. Frischauf I, Schindl R, Bergsmann J, Derler I, Fahrner M, Muik M, Fritsch R, Lackner B, Groschner K, Romanin C (2011) Cooperativeness of Orai cytosolic domains tunes subtype-specific gating. J Biol Chem 286(10):8577–8584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schindl R, Bergsmann J, Frischauf I, Derler I, Fahrner M, Muik M, Fritsch R, Groschner K, Romanin C (2008) 2-aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J Biol Chem 283(29):20261–20267

    Article  CAS  PubMed  Google Scholar 

  83. Schindl R, Frischauf I, Bergsmann J, Muik M, Derler I, Lackner B, Groschner K, Romanin C (2009) Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel. Proc Natl Acad Sci U S A 106(46):19623–19628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282(22):16232–16243

    Article  CAS  PubMed  Google Scholar 

  85. Zhang SL, Kozak JA, Jiang W, Yeromin AV, Chen J, Yu Y, Penna A, Shen W, Chi V, Cahalan MD (2008) Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J Biol Chem 283(25):17662–17671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li Z, Lu J, Xu P, Xie X, Chen L, Xu T (2007) Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J Biol Chem 282(40):29448–29456

    Article  CAS  PubMed  Google Scholar 

  87. Takahashi Y, Murakami M, Watanabe H, Hasegawa H, Ohba T, Munehisa Y, Nobori K, Ono K, Iijima T, Ito H (2007) Essential role of the N-terminus of murine Orai1 in store-operated Ca(2+) entry. Biochem Biophys Res Commun 356(1):45–52

    Article  CAS  PubMed  Google Scholar 

  88. Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA (2007) Molecular basis of the CRAC channel. Cell Calcium 42(2):133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Frischauf I, Muik M, Derler I, Bergsmann J, Fahrner M, Schindl R, Groschner K, Romanin C (2009) Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 284(32):21696–21706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Derler I, Fahrner M, Muik M, Lackner B, Schindl R, Groschner K, Romanin C (2009) A Ca2+ release-activated Ca2+ (CRAC) modulatory domain (CMD) within STIM1 mediates fast Ca2+-dependent inactivation of ORAI1 channels. J Biol Chem 284(37):24933–24938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci U S A 106(36):15495–15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li J, Sukumar P, Milligan CJ, Kumar B, Ma ZY, Munsch CM, Jiang LH, Porter KE, Beech DJ (2008) Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circ Res 103(8):e97–e104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105(2):209–226

    Article  CAS  PubMed  Google Scholar 

  95. McNally BA, Yamashita M, Engh A, Prakriya M (2009) Structural determinants of ion permeation in CRAC channels. Proc Natl Acad Sci U S A 106(52):22516–22521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou Y, Ramachandran S, Oh-Hora M, Rao A, Hogan PG (2010) Pore architecture of the ORAI1 store-operated calcium channel. Proc Natl Acad Sci U S A 107(11):4896–4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mignen O, Thompson JL, Shuttleworth TJ (2008) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586(2):419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, Chen Y, Hille B, Xu T, Chen L (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci U S A 105(36):13668–13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Madl J, Weghuber J, Fritsch R, Derler I, Fahrner M, Frischauf I, Lackner B, Romanin C, Schutz GJ (2010) Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem 285(52):41135–41142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, Kiyonaka S, Mori Y, Sato C (2009) Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 284:13676–13685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Demuro A, Penna A, Safrina O, Yeromin AV, Amcheslavsky A, Cahalan MD, Parker I (2011) Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. Proc Natl Acad Sci U S A 108(43):17832–17837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thompson JL, Shuttleworth TJ (2013) How many Orai’s does it take to make a CRAC channel? Sci Rep 3:1961

    PubMed  PubMed Central  Google Scholar 

  104. Rothberg BS, Wang Y, Gill DL (2013) Orai channel pore properties and gating by STIM: implications from the Orai crystal structure. Sci Signal 6(267):pe9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Calloway NT, Holowka DA, Baird BA (2010) A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled-coil of Orai1. Biochemistry 49:1067–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lis A, Zierler S, Peinelt C, Fleig A, Penner R (2010) A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating. J Gen Physiol 136(6):673–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McNally BA, Somasundaram A, Jairaman A, Yamashita M, Prakriya M (2013) The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J Physiol 591(Pt 11):2833–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zheng H, Zhou MH, Hu C, Kuo E, Peng X, Hu J, Kuo L, Zhang SL (2013) Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J Biol Chem 288(16):11263–11272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  CAS  PubMed  Google Scholar 

  110. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16(20):2073–2079

    Article  CAS  PubMed  Google Scholar 

  111. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Srikanth S, Yee MK, Gwack Y, Ribalet B (2011) The third transmembrane segment of orai1 protein modulates Ca2+ release-activated Ca2+ (CRAC) channel gating and permeation properties. J Biol Chem 286(40):35318–35328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yamashita M, Prakriya M (2014) Divergence of Ca(2+) selectivity and equilibrium Ca(2+) blockade in a Ca(2+) release-activated Ca(2+) channel. J Gen Physiol 143(3):325–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McNally BA, Somasundaram A, Yamashita M, Prakriya M (2012) Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482:241–245

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gudlur A, Quintana A, Zhou Y, Hirve N, Mahapatra S, Hogan PG (2014) STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nat Commun 5:5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang SL, Yeromin AV, Hu J, Amcheslavsky A, Zheng H, Cahalan MD (2011) Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91. Proc Natl Acad Sci U S A 108(43):17838–17843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yamashita M, Navarro-Borelly L, McNally BA, Prakriya M (2007) Orai1 mutations alter ion permeation and Ca2+-dependent fast inactivation of CRAC channels: evidence for coupling of permeation and gating. J Gen Physiol 130(5):525–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Amcheslavsky A, Safrina O, Cahalan MD (2013) Orai3 TM3 point mutation G158C alters kinetics of 2-APB-induced gating by disulfide bridge formation with TM2 C101. J Gen Physiol 142(4):405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Derler I, Plenk P, Fahrner M, Muik M, Jardin I, Schindl R, Gruber HJ, Groschner K, Romanin C (2013) The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem 288(40):29025–29034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li M, Du J, Jiang J, Ratzan W, Su L-T, Runnels LW, Yue L (2007) Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J Biol Chem 282(35):25817–25830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Calloway N, Vig M, Kinet JP, Holowka D, Baird B (2009) Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 20(1):389–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stathopulos PB, Schindl R, Fahrner M, Zheng L, Gasmi-Seabrook GM, Muik M, Romanin C, Ikura M (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4:2963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Bergsmann J, Derler I, Muik M, Frischauf I, Fahrner M, Pollheimer P, Schwarzinger C, Gruber HJ, Groschner K, Romanin C (2011) Molecular determinants within N terminus of Orai3 protein that control channel activation and gating. J Biol Chem 286(36):31565–31575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF projects P25172 and P27263 to C.R. and V 286-B21 to I.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Frischauf or Christoph Romanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frischauf, I., Fahrner, M., Jardín, I., Romanin, C. (2016). The STIM1: Orai Interaction. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_2

Download citation

Publish with us

Policies and ethics