Skip to main content

Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Abstract

Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca2+ whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca2+ signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca2+ influx, although Na+ entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca2+ mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca2+ responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    CAS  PubMed  Google Scholar 

  2. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067

    Article  CAS  PubMed  Google Scholar 

  3. Mahaut-Smith MP, Sage SO, Rink TJ (1992) Rapid ADP-evoked currents in human platelets recorded with the nystatin permeabilized patch technique. J Biol Chem 267(5):3060–3065

    CAS  PubMed  Google Scholar 

  4. Sage SO, Rink TJ (1987) The kinetics of changes in intracellular calcium concentration in fura-2-loaded human platelets. J Biol Chem 262(34):16364–16369

    CAS  PubMed  Google Scholar 

  5. Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci: 24(13):3413–3420

    Article  CAS  PubMed  Google Scholar 

  6. Sage SO, Reast R, Rink TJ (1990) ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J 265(3):675–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lohse MJ, Hein P, Hoffmann C, Nikolaev VO, Vilardaga JP, Bunemann M (2008) Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 153(Suppl 1):S125–S132

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Morrell CN, Sun H, Ikeda M, Beique JC, Swaim AM, Mason E, Martin TV, Thompson LE, Gozen O, Ampagoomian D, Sprengel R, Rothstein J, Faraday N, Huganir R, Lowenstein CJ (2008) Glutamate mediates platelet activation through the AMPA receptor. J Exp Med 205(3):575–584

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun H, Swaim A, Herrera JE, Becker D, Becker L, Srivastava K, Thompson LE, Shero MR, Perez-Tamayo A, Suktitipat B, Mathias R, Contractor A, Faraday N, Morrell CN (2009) Platelet kainate receptor signaling promotes thrombosis by stimulating cyclooxygenase activation. Circ Res 105(6):595–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun B, Li J, Okahara K, Kambayashi J (1998) P2X1 purinoceptor in human platelets. Molecular cloning and functional characterization after heterologous expression. J Biol Chem 273(19):11544–11547

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Ostberg O, Wihlborg AK, Brogren H, Jern S, Erlinge D (2003) Quantification of ADP and ATP receptor expression in human platelets. J Thromb Haemost 1(2):330–336

    Article  CAS  PubMed  Google Scholar 

  12. Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ (2002) A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 135(2):363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fung CY, Cendana C, Farndale RW, Mahaut-Smith MP (2007) Primary and secondary agonists can use P2X1 receptors as a major pathway to increase intracellular Ca2+ in the human platelet. J Thromb Haemost 5(5):910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave JP, Cattaneo M, Ruggeri ZM, Evans R, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198(4):661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erhardt JA, Toomey JR, Douglas SA, Johns DG (2006) P2X1 stimulation promotes thrombin receptor-mediated platelet aggregation. J Thromb Haemost 4(4):882–890

    Article  CAS  PubMed  Google Scholar 

  16. Feske S, Skolnik EY, Prakriya M (2012) Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 12(7):532–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509(7500):310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maitre B, Magnenat S, Heim V, Ravanat C, Evans RJ, de la Salle H, Gachet C, Hechler B (2015) The P2X1 receptor is required for neutrophil extravasation during lipopolysaccharide-induced lethal endotoxemia in mice. J Immunol 194(2):739–749

    Article  CAS  PubMed  Google Scholar 

  19. Darbousset R, Delierneux C, Mezouar S, Hego A, Lecut C, Guillaumat I, Riederer MA, Evans RJ, Dignat-George F, Panicot-Dubois L, Oury C, Dubois C (2014) P2X1 expressed on polymorphonuclear neutrophils and platelets is required for thrombosis in mice. Blood 124(16):2575–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371(6497):519–523

    Article  CAS  PubMed  Google Scholar 

  21. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371(6497):516–519

    Article  CAS  PubMed  Google Scholar 

  22. Kaczmarek-Hajek K, Lorinczi E, Hausmann R, Nicke A (2012) Molecular and functional properties of P2X receptors – recent progress and persisting challenges. Purinergic Signal 8(3):375–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580

    Article  CAS  PubMed  Google Scholar 

  24. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460(7255):592–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evans RJ (2010) Structural interpretation of P2X receptor mutagenesis studies on drug action. Br J Pharmacol 161(5):961–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Young MT (2010) P2X receptors: dawn of the post-structure era. Trends Biochem Sci 35(2):83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rassendren F, Buell G, Newbolt A, North RA, Surprenant A (1997) Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J 16(12):3446–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Egan TM, Haines WR, Voigt MM (1998) A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J Neurosci 18(7):2350–2359

    CAS  PubMed  Google Scholar 

  30. Li M, Chang TH, Silberberg SD, Swartz KJ (2008) Gating the pore of P2X receptor channels. Nat Neurosci 11(8):883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawate T, Robertson JL, Li M, Silberberg SD, Swartz KJ (2011) Ion access pathway to the transmembrane pore in P2X receptor channels. J Gen Physiol 137(6):579–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kracun S, Chaptal V, Abramson J, Khakh BS (2010) Gated access to the pore of a P2X receptor: structural implications for closed-open transitions. J Biol Chem 285(13):10110–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Migita K, Haines WR, Voigt MM, Egan TM (2001) Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X2 receptor. J Biol Chem 276(33):30934–30941

    Article  CAS  PubMed  Google Scholar 

  34. Samways DS, Egan TM (2007) Acidic amino acids impart enhanced Ca2+ permeability and flux in two members of the ATP-gated P2X receptor family. J Gen Physiol 129(3):245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lewis CJ, Evans RJ (2000) Lack of run-down of smooth muscle P2X receptor currents recorded with the amphotericin permeabilized patch technique, physiological and pharmacological characterization of the properties of mesenteric artery P2X receptor ion channels. Br J Pharmacol 131(8):1659–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allsopp RC, Evans RJ (2011) The intracellular amino terminus plays a dominant role in desensitization of ATP-gated P2X receptor ion channels. J Biol Chem 286(52):44691–44701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Allsopp RC, Farmer LK, Fryatt AG, Evans RJ (2013) P2X receptor chimeras highlight roles of the amino terminus to partial agonist efficacy, the carboxyl terminus to recovery from desensitization, and independent regulation of channel transitions. J Biol Chem 288(29):21412–21421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fryatt AG, Evans RJ (2014) Kinetics of conformational changes revealed by voltage-clamp fluorometry give insight to desensitization at ATP-gated human P2X1 receptors. Mol Pharmacol 86(6):707–715

    Article  CAS  PubMed  Google Scholar 

  39. Vial C, Tobin AB, Evans RJ (2004) G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 382(Pt 1):101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ase AR, Raouf R, Belanger D, Hamel E, Seguela P (2005) Potentiation of P2X1 ATP-gated currents by 5-hydroxytryptamine 2A receptors involves diacylglycerol-dependent kinases and intracellular calcium. J Pharmacol Exp Ther 315(1):144–154

    Article  CAS  PubMed  Google Scholar 

  41. Wen H, Evans RJ (2009) Regions of the amino terminus of the P2X receptor required for modification by phorbol ester and mGluR1alpha receptors. J Neurochem 108(2):331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vial C, Evans RJ (2005) Disruption of lipid rafts inhibits P2X1 receptor-mediated currents and arterial vasoconstriction. J Biol Chem 280(35):30705–30711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vial C, Fung CY, Goodall AH, Mahaut-Smith MP, Evans RJ (2006) Differential sensitivity of human platelet P2X1 and P2Y1 receptors to disruption of lipid rafts. Biochem Biophys Res Commun 343(2):415–419

    Article  CAS  PubMed  Google Scholar 

  44. Allsopp RC, Lalo U, Evans RJ (2010) Lipid raft association and cholesterol sensitivity of P2X1-4 receptors for ATP: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of P2X1 receptors. J Biol Chem 285(43):32770–32777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lalo U, Roberts JA, Evans RJ (2011) Identification of human P2X1 receptor-interacting proteins reveals a role of the cytoskeleton in receptor regulation. J Biol Chem 286(35):30591–30599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lalo U, Jones S, Roberts JA, Mahaut-Smith MP, Evans RJ (2012) Heat shock protein 90 inhibitors reduce trafficking of ATP-gated P2X1 receptors and human platelet responsiveness. J Biol Chem 287(39):32747–32754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kukulski F, Levesque SA, Sevigny J (2011) Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol 61:263–299

    Article  CAS  PubMed  Google Scholar 

  49. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694

    Article  CAS  PubMed  Google Scholar 

  50. Handa M, Guidotti G (1996) Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochem Biophys Res Commun 218(3):916–923

    Article  CAS  PubMed  Google Scholar 

  51. Fung CY, Jones S, Ntrakwah A, Naseem KM, Farndale RW, Mahaut-Smith MP (2012) Platelet Ca2+ responses coupled to glycoprotein VI and Toll-like receptors persist in the presence of endothelial-derived inhibitors: roles for secondary activation of P2X1 receptors and release from intracellular Ca2+ stores. Blood 119(15):3613–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with α, β-methylene ATP. Thromb Haemost 85(2):303–308

    CAS  PubMed  Google Scholar 

  53. Kauffenstein G, Pelletier J, Lavoie EG, Kukulski F, Martin-Satue M, Dufresne SS, Frenette J, Ribas Furstenau C, Sereda MJ, Toutain B, Henrion D, Sullivan R, Vial C, Sevigny J (2014) Nucleoside triphosphate diphosphohydrolase-1 ectonucleotidase is required for normal vas deferens contraction and male fertility through maintaining P2X1 receptor function. J Biol Chem 289(41):28629–28639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kansas GS, Wood GS, Tedder TF (1991) Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol 146(7):2235–2244

    CAS  PubMed  Google Scholar 

  55. Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99(6):1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koziak K, Sevigny J, Robson SC, Siegel JB, Kaczmarek E (1999) Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thromb Haemost 82(5):1538–1544

    CAS  PubMed  Google Scholar 

  57. Atkinson B, Dwyer K, Enjyoji K, Robson SC (2006) Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: potential as therapeutic targets. Blood Cells Mol Dis 36(2):217–222

    Article  CAS  PubMed  Google Scholar 

  58. Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC (2008) CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol 142(4):627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Birk AV, Bubman D, Broekman MJ, Robertson HD, Drosopoulos JH, Marcus AJ, Szeto HH (2002) Role of a novel soluble nucleotide phospho-hydrolase from sheep plasma in inhibition of platelet reactivity: hemostasis, thrombosis, and vascular biology. J Lab Clin Med 139(2):116–124

    Article  CAS  PubMed  Google Scholar 

  60. Jones S, Evans RJ, Mahaut-Smith MP (2011) Extracellular Ca2+ modulates ADP-evoked aggregation through altered agonist degradation: implications for conditions used to study P2Y receptor activation. Br J Haematol 153(1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cauwenberghs S, Feijge MA, Hageman G, Hoylaerts M, Akkerman JW, Curvers J, Heemskerk JW (2006) Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: importance for platelet activity during thrombus formation. Transfusion 46(6):1018–1028

    Article  CAS  PubMed  Google Scholar 

  62. Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS 2nd, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5(9):1010–1017

    Article  CAS  PubMed  Google Scholar 

  63. Buell G, Michel AD, Lewis C, Collo G, Humphrey PP, Surprenant A (1996) P2X1 receptor activation in HL60 cells. Blood 87(7):2659–2664

    CAS  PubMed  Google Scholar 

  64. Mahaut-Smith MP, Sage SO, Rink TJ (1990) Receptor-activated single channels in intact human platelets. J Biol Chem 265(18):10479–10483

    CAS  PubMed  Google Scholar 

  65. Sage SO, Pintado E, Mahaut-Smith MP, Merritt JE (1990) Rapid kinetics of agonist-evoked changes in cytosolic free Ca2+ concentration in fura-2-loaded human neutrophils. Biochem J 265(3):915–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ (2000) ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131(1):108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vial C, Pitt SJ, Roberts J, Rolf MG, Mahaut-Smith MP, Evans RJ (2003) Lack of evidence for functional ADP-activated human P2X1 receptors supports a role for ATP during hemostasis and thrombosis. Blood 102(10):3646–3651

    Article  CAS  PubMed  Google Scholar 

  68. Hechler B, Gachet C (2011) P2 receptors and platelet function. Purinergic Signal 7(3):293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP (2006) Nucleotide receptor signaling in platelets. J Thromb Haemost 4(11):2317–2326

    Article  CAS  PubMed  Google Scholar 

  70. Palmer RK, Boyer JL, Schachter JB, Nicholas RA, Harden TK (1998) Agonist action of adenosine triphosphates at the human P2Y1 receptor. Mol Pharmacol 54(6):1118–1123

    CAS  PubMed  Google Scholar 

  71. Takasaki J, Kamohara M, Saito T, Matsumoto M, Matsumoto S, Ohishi T, Soga T, Matsushime H, Furuichi K (2001) Molecular cloning of the platelet P2TAC ADP receptor: pharmacological comparison with another ADP receptor, the P2Y1 receptor. Mol Pharmacol 60(3):432–439

    CAS  PubMed  Google Scholar 

  72. Waldo GL, Harden TK (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65(2):426–436

    Article  CAS  PubMed  Google Scholar 

  73. Hechler B, Vigne P, Leon C, Breittmayer JP, Gachet C, Frelin C (1998) ATP derivatives are antagonists of the P2Y1 receptor: similarities to the platelet ADP receptor. Mol Pharmacol 53(4):727–733

    CAS  PubMed  Google Scholar 

  74. Leon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403(1):26–30

    Article  CAS  PubMed  Google Scholar 

  75. Mills DC (1996) ADP receptors on platelets. Thromb Haemost 76(6):835–856

    CAS  PubMed  Google Scholar 

  76. Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, van Biesen T (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376(1–2):127–138

    Article  CAS  PubMed  Google Scholar 

  77. Cinkilic O, King BF, van der Giet M, Schluter H, Zidek W, Burnstock G (2001) Selective agonism of group I P2X receptors by dinucleotides dependent on a single adenine moiety. J Pharmacol Exp Ther 299(1):131–136

    CAS  PubMed  Google Scholar 

  78. Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol 48(2):178–183

    CAS  PubMed  Google Scholar 

  79. Lewis CJ, Gitterman DP, Schluter H, Evans RJ (2000) Effects of diadenosine polyphosphates (ApnAs) and adenosine polyphospho guanosines (ApnGs) on rat mesenteric artery P2X receptor ion channels. Br J Pharmacol 129(1):124–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sage SO, MacKenzie AB, Jenner S, Mahaut-Smith MP (1997) Purinoceptor-evoked calcium signalling in human platelets. Prostaglandins Leukot Essent Fatty Acids 57(4–5):435–438

    Article  CAS  PubMed  Google Scholar 

  81. Wildman SS, Brown SG, King BF, Burnstock G (1999) Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur J Pharmacol 367(1):119–123

    Article  CAS  PubMed  Google Scholar 

  82. Jankowski J, Hagemann J, Tepel M, van Der Giet M, Stephan N, Henning L, Gouni-Berthold I, Sachinidis A, Zidek W, Schluter H (2001) Dinucleotides as growth-promoting extracellular mediators. Presence of dinucleoside diphosphates Ap2A, Ap2G, and Gp2G in releasable granules of platelets. J Biol Chem 276(12):8904–8909

    Article  CAS  PubMed  Google Scholar 

  83. Jankowski J, Potthoff W, van der Giet M, Tepel M, Zidek W, Schluter H (1999) High-performance liquid chromatographic assay of the diadenosine polyphosphates in human platelets. Anal Biochem 269(1):72–78

    Article  CAS  PubMed  Google Scholar 

  84. Jankowski J, Tepel M, van der Giet M, Tente IM, Henning L, Junker R, Zidek W, Schluter H (1999) Identification and characterization of P1, P7-Di(adenosine-5′)-heptaphosphate from human platelets. J Biol Chem 274(34):23926–23931

    Article  CAS  PubMed  Google Scholar 

  85. Luthje J, Ogilvie A (1988) Catabolism of Ap4A and Ap3A in whole blood. The dinucleotides are long-lived signal molecules in the blood ending up as intracellular ATP in the erythrocytes. Eur J Biochem/FEBS 173(1):241–245

    Article  CAS  Google Scholar 

  86. Schluter H, Tepel M, Zidek W (1996) Vascular actions of diadenosine phosphates. J Auton Pharmacol 16(6):357–362

    Article  CAS  PubMed  Google Scholar 

  87. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):299–309

    Article  CAS  PubMed  Google Scholar 

  88. Tolle M, Jankowski V, Schuchardt M, Wiedon A, Huang T, Hub F, Kowalska J, Jemielity J, Guranowski A, Loddenkemper C, Zidek W, Jankowski J, van der Giet M (2008) Adenosine 5′-tetraphosphate is a highly potent purinergic endothelium-derived vasoconstrictor. Circ Res 103(10):1100–1108

    Article  PubMed  CAS  Google Scholar 

  89. Jankowski V, Tolle M, Vanholder R, Schonfelder G, van der Giet M, Henning L, Schluter H, Paul M, Zidek W, Jankowski J (2005) Uridine adenosine tetraphosphate: a novel endothelium- derived vasoconstrictive factor. Nat Med 11(2):223–227

    Article  CAS  PubMed  Google Scholar 

  90. Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3(104):re1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hayoz S, Jia C, Hegg C (2012) Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium. BMC Neurosci 13:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sivaramakrishnan V, Bidula S, Campwala H, Katikaneni D, Fountain SJ (2012) Constitutive lysosome exocytosis releases ATP and engages P2Y receptors in human monocytes. J Cell Sci 125(Pt 19):4567–4575

    Article  CAS  PubMed  Google Scholar 

  93. Born GV, Kratzer MA (1984) Source and concentration of extracellular adenosine triphosphate during haemostasis in rats, rabbits and man. J Physiol 354:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Praetorius HA, Leipziger J (2009) ATP release from non-excitable cells. Purinergic Signal 5(4):433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Golebiewska EM, Poole AW (2013) Secrets of platelet exocytosis – what do we really know about platelet secretion mechanisms? Br J Haematol 165(2):204–216

    Google Scholar 

  96. Koseoglu S, Flaumenhaft R (2013) Advances in platelet granule biology. Curr Opin Hematol 20(5):464–471

    Article  PubMed  Google Scholar 

  97. Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129(6):485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Holmsen H, Weiss HJ (1979) Secretable storage pools in platelets. Annu Rev Med 30:119–134

    Article  CAS  PubMed  Google Scholar 

  99. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103(20):7655–7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dahl G (2015) ATP release through pannexon channels. Philos Trans R Soc Lond B Biol Sci 370(1672):20140191

    Article  PubMed  CAS  Google Scholar 

  101. Tomes CN (2015) The proteins of exocytosis: lessons from the sperm model. Biochem J 465(3):359–370

    Article  CAS  PubMed  Google Scholar 

  102. Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14(7):478–494

    Article  CAS  PubMed  Google Scholar 

  103. Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54(7):700–715

    Article  PubMed  Google Scholar 

  104. Messenger SW, Falkowski MA, Groblewski GE (2014) Ca2+-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 55(6):369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Higashi T, Isomoto A, Tyuma I, Kakishita E, Uomoto M, Nagai K (1985) Quantitative and continuous analysis of ATP release from blood platelets with firefly luciferase luminescence. Thromb Haemost 53(1):65–69

    CAS  PubMed  Google Scholar 

  106. Mills DC, Robb IA, Roberts GC (1968) The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol 195(3):715–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Holmsen H, Day HJ (1971) Adenine nucleotides and platelet function. Ser Haematol 4(1):28–58

    CAS  PubMed  Google Scholar 

  108. Detwiler TC, Feinman RD (1973) Kinetics of the thrombin-induced release of adenosine triphosphate by platelets. Comparison with release of calcium. Biochemistry 12(13):2462–2468

    Article  CAS  PubMed  Google Scholar 

  109. Ingerman CM, Smith JB, Silver MJ (1979) Direct measurement of platelet secretion in whole blood. Thromb Res 16(3–4):335–344

    Article  CAS  PubMed  Google Scholar 

  110. Beigi R, Kobatake E, Aizawa M, Dubyak GR (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276(1):C267–C278

    CAS  PubMed  Google Scholar 

  111. Hollins B, Ikeda SR (1997) Heterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release. J Neurophysiol 78(6):3069–3076

    CAS  PubMed  Google Scholar 

  112. Kawa K (2004) Discrete but simultaneous release of adenine nucleotides and serotonin from mouse megakaryocytes as detected with patch- and carbon-fiber electrodes. Am J Physiol Cell Physiol 286(1):C119–C128

    Article  CAS  PubMed  Google Scholar 

  113. Mahaut-Smith MP, Tolhurst G, Evans RJ (2004) Emerging roles for P2X1 receptors in platelet activation. Platelets 15(3):131–144

    Article  CAS  PubMed  Google Scholar 

  114. Ge S, White JG, Haynes CL (2009) Quantal release of serotonin from platelets. Anal Chem 81(8):2935–2943

    Article  CAS  PubMed  Google Scholar 

  115. Ge S, Woo E, White JG, Haynes CL (2011) Electrochemical measurement of endogenous serotonin release from human blood platelets. Anal Chem 83(7):2598–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Costa JL, Detwiler TC, Feinman RD, Murphy DL, Patlak CS, Pettigrew KD (1977) Quantitative evaluation of the loss of human platelet dense bodies following stimulation by thrombin or A23187. J Physiol 264(1):297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Costa JL, Reese TS, Murphy DL (1974) Serotonin storage in platelets: estimation of storage-packet size. Science 183(4124):537–538

    Article  CAS  PubMed  Google Scholar 

  118. White JG (1968) The dense bodies of human platelets. Origin of serotonin storage particles from platelet granules. Am J Pathol 53(5):791–808

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cockcroft S, Gomperts BD (1979) Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 296:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cockcroft S, Gomperts BD (1979) ATP induces nucleotide permeability in rat mast cells. Nature 279(5713):541–542

    Article  CAS  PubMed  Google Scholar 

  121. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  CAS  PubMed  Google Scholar 

  122. Miklavc P, Thompson KE, Frick M (2013) A new role for P2X4 receptors as modulators of lung surfactant secretion. Front Cell Neurosci 7:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Bao Y, Chen Y, Ledderose C, Li L, Junger WG (2013) Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 288(31):22650–22657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ma W, Compan V, Zheng W, Martin E, North RA, Verkhratsky A, Surprenant A (2012) Pannexin 1 forms an anion-selective channel. Pflugers Archiv: Eur J Physiol 463(4):585–592

    Article  CAS  Google Scholar 

  125. Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282(43):31733–31743

    Article  CAS  PubMed  Google Scholar 

  126. Boassa D, Qiu F, Dahl G, Sosinsky G (2008) Trafficking dynamics of glycosylated pannexin 1 proteins. Cell Commun Adhes 15(1):119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Archiv: Eur J Physiol 457(6):1207–1226

    Article  CAS  Google Scholar 

  128. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 100(23):13644–13649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Taylor KA, Wright JR, Vial C, Evans RJ, Mahaut-Smith MP (2014) Amplification of human platelet activation by surface pannexin-1 channels. J Thromb Haemost 12(6):987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580(1):239–244

    Article  CAS  PubMed  Google Scholar 

  131. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312(5775):924–927

    Article  CAS  PubMed  Google Scholar 

  132. Sandilos JK, Chiu YH, Chekeni FB, Armstrong AJ, Walk SF, Ravichandran KS, Bayliss DA (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287(14):11303–11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Taylor KA, Wright JR, Mahaut-Smith MP (2015) Regulation of Pannexin-1 channel activity. Biochem Soc Trans 43(3):502–507

    Article  CAS  PubMed  Google Scholar 

  134. Garre JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Saez JC, Bennett MV, Abudara V (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci U S A 107(52):22659–22664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1b release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS (2007) Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26(3):657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Woehrle T, Yip L, Elkhal A, Sumi Y, Chen Y, Yao Y, Insel PA, Junger WG (2010) Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116(18):3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Poornima V, Madhupriya M, Kootar S, Sujatha G, Kumar A, Bera AK (2012) P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization. J Mol Neurosci 46(3):585–594

    Article  CAS  PubMed  Google Scholar 

  139. Vessey DA, Li L, Kelley M (2011) P2X7 receptor agonists pre- and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2X7 channels. Am J Physiol Heart Circ Physiol 301(3):H881–H887

    Article  CAS  PubMed  Google Scholar 

  140. Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, Mitchell CH (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 590(Pt 10):2285–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Molica F, Morel S, Meens MJ, Denis JF, Bradfield PF, Penuela S, Zufferey A, Monyer H, Imhof BA, Chanson M, Laird DW, Fontana P, Kwak BR (2015) Functional role of a polymorphism in the Pannexin1 gene in collagen-induced platelet aggregation. Thromb Haemost 114(2):325–336

    Article  CAS  PubMed  Google Scholar 

  142. Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, Verderio C, Buer J, Scanziani E, Grassi F (2008) Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal 1(39):ra6

    Article  PubMed  CAS  Google Scholar 

  143. Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci: Basic Clin 191:117–123

    Article  CAS  Google Scholar 

  144. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Poon IK, Chiu YH, Armstrong AJ, Kinchen JM, Juncadella IJ, Bayliss DA, Ravichandran KS (2014) Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature 507(7492):329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G, Surprenant A, North RA (1996) Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 497(Pt 2):413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rolf MG, Mahaut-Smith MP (2002) Effects of enhanced P2X1 receptor Ca2+ influx on functional responses in human platelets. Thromb Haemost 88(3):495–502

    CAS  PubMed  Google Scholar 

  149. MacKenzie AB, Mahaut-Smith MP, Sage SO (1996) Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem 271(6):2879–2881

    Article  CAS  PubMed  Google Scholar 

  150. Benham CD (1989) ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery. J Physiol 419:689–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Benham CD, Tsien RW (1987) A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328(6127):275–278

    Article  CAS  PubMed  Google Scholar 

  152. Schneider P, Hopp HH, Isenberg G (1991) Ca2+ influx through ATP-gated channels increments [Ca2+]i and inactivates ICa in myocytes from guinea-pig urinary bladder. J Physiol 440:479–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stuhmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51(1):109–118

    CAS  PubMed  Google Scholar 

  154. Fung CY, Brearley CA, Farndale RW, Mahaut-Smith MP (2005) A major role for P2X1 receptors in the early collagen-evoked intracellular Ca2+ responses of human platelets. Thromb Haemost 94(1):37–40

    CAS  PubMed  Google Scholar 

  155. Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermylen J, Hoylaerts MF (2001) The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost 86(5):1264–1271

    CAS  PubMed  Google Scholar 

  156. Salaun C, James DJ, Chamberlain LH (2004) Lipid rafts and the regulation of exocytosis. Traffic 5(4):255–264

    Article  PubMed  PubMed Central  Google Scholar 

  157. Jones S, Evans RJ, Mahaut-Smith MP (2014) Ca2+ influx through P2X1 receptors amplifies P2Y1 receptor-evoked Ca2+ signaling and ADP-evoked platelet aggregation. Mol Pharmacol 86(3):243–251

    Article  PubMed  CAS  Google Scholar 

  158. Eberhard DA, Holz RW (1988) Intracellular Ca2+ activates phospholipase C. Trends Neurosci 11(12):517–520

    Article  CAS  PubMed  Google Scholar 

  159. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Watson SP, Poole A, Asselin J (1995) Ethylene glycol bis(beta-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry. Mol Pharmacol 47(4):823–830

    CAS  PubMed  Google Scholar 

  161. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351(6329):751–754

    Article  CAS  PubMed  Google Scholar 

  162. Ohana L, Barchad O, Parnas I, Parnas H (2006) The metabotropic glutamate G-protein-coupled receptors mGluR3 and mGluR1a are voltage-sensitive. J Biol Chem 281(34):24204–24215

    Article  CAS  PubMed  Google Scholar 

  163. Parnas H, Parnas I (2007) The chemical synapse goes electric: Ca2+- and voltage-sensitive GPCRs control neurotransmitter release. Trends Neurosci 30(2):54–61

    Article  CAS  PubMed  Google Scholar 

  164. Martinez-Pinna J, Gurung IS, Vial C, Leon C, Gachet C, Evans RJ, Mahaut-Smith MP (2005) Direct voltage control of signaling via P2Y1 and other Gaq-coupled receptors. J Biol Chem 280(2):1490–1498

    Article  CAS  PubMed  Google Scholar 

  165. Mahaut-Smith MP, Martinez-Pinna J, Gurung IS (2008) A role for membrane potential in regulating GPCRs? Trends Pharmacol Sci 29(8):421–429

    Article  CAS  PubMed  Google Scholar 

  166. Martinez-Pinna J, Tolhurst G, Gurung IS, Vandenberg JI, Mahaut-Smith MP (2004) Sensitivity limits for voltage control of P2Y receptor-evoked Ca2+ mobilization in the rat megakaryocyte. J Physiol 555(Pt 1):61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sage SO, Rink TJ, Mahaut-Smith MP (1991) Resting and ADP-evoked changes in cytosolic free sodium concentration in human platelets loaded with the indicator SBFI. J Physiol 441:559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mahaut-Smith MP (2013) A role for platelet TRPC channels in the Ca2+ response that induces procoagulant activity. Sci Signal 6(281):pe23

    Article  PubMed  CAS  Google Scholar 

  169. Harper MT, Mason MJ, Sage SO, Harper AG (2010) Phorbol ester-evoked Ca2+ signaling in human platelets is via autocrine activation of P2X1 receptors, not a novel non-capacitative Ca2+ entry. J Thromb Haemost 8(7):1604–1613

    Article  CAS  PubMed  Google Scholar 

  170. Erhardt JA, Pillarisetti K, Toomey JR (2003) Potentiation of platelet activation through the stimulation of P2X1 receptors. J Thromb Haemost 1(12):2626–2635

    Article  CAS  PubMed  Google Scholar 

  171. Toth-Zsamboki E, Oury C, Cornelissen H, De Vos R, Vermylen J, Hoylaerts MF (2003) P2X1-mediated ERK2 activation amplifies the collagen-induced platelet secretion by enhancing myosin light chain kinase activation. J Biol Chem 278(47):46661–46667

    Article  CAS  PubMed  Google Scholar 

  172. Oury C, Daenens K, Hu H, Toth-Zsamboki E, Bryckaert M, Hoylaerts MF (2006) ERK2 activation in arteriolar and venular murine thrombosis: platelet receptor GPIb vs. P2X1. J Thromb Haemost 4(2):443–452

    Article  CAS  PubMed  Google Scholar 

  173. Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF (2002) P2X1-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood 100(7):2499–2505

    Article  CAS  PubMed  Google Scholar 

  174. Oury C, Kuijpers MJ, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, Feijge MA, De Vos R, Vermylen J, Heemskerk JW, Hoylaerts MF (2003) Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101(10):3969–3976

    Article  CAS  PubMed  Google Scholar 

  175. Huang Z, Liu P, Zhu L, Li N, Hu H (2014) P2X1-initiated p38 signalling enhances thromboxane A2-induced platelet secretion and aggregation. Thromb Haemost 112(1):142–150

    Article  CAS  PubMed  Google Scholar 

  176. Woehrle T, Yip L, Manohar M, Sumi Y, Yao Y, Chen Y, Junger WG (2010) Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors. J Leukoc Biol 88(6):1181–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hechler B, Magnenat S, Zighetti ML, Kassack MU, Ullmann H, Cazenave JP, Evans R, Cattaneo M, Gachet C (2005) Inhibition of platelet functions and thrombosis through selective or nonselective inhibition of the platelet P2 receptors with increasing doses of NF449 [4,4′,4″,4‴-(carbonylbis(imino-5,1,3-benzenetriylbis-(carbonylimino)))tetrakis -benzene-1,3-disulfonic acid octasodium salt]. J Pharmacol Exp Ther 314(1):232–243

    Article  CAS  PubMed  Google Scholar 

  178. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, Konrad I, Kennerknecht E, Reges K, Holdenrieder S, Braun S, Reinhardt C, Spannagl M, Preissner KT, Engelmann B (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896

    Article  CAS  PubMed  Google Scholar 

  179. von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Kollnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209(4):819–835

    Article  CAS  Google Scholar 

  180. Darbousset R, Thomas GM, Mezouar S, Frere C, Bonier R, Mackman N, Renne T, Dignat-George F, Dubois C, Panicot-Dubois L (2012) Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 120(10):2133–2143

    Article  CAS  PubMed  Google Scholar 

  181. Geiger J, Nolte C, Butt E, Sage SO, Walter U (1992) Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets. Proc Natl Acad Sci U S A 89(3):1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Schwarz UR, Walter U, Eigenthaler M (2001) Taming platelets with cyclic nucleotides. Biochem Pharmacol 62(9):1153–1161

    Article  CAS  PubMed  Google Scholar 

  183. Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost 7(7):1057–1066

    Article  CAS  PubMed  Google Scholar 

  184. Mahaut-Smith MP (2012) The unique contribution of ion channels to platelet and megakaryocyte function. J Thromb Haemost 10(9):1722–1732

    Article  CAS  PubMed  Google Scholar 

  185. Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11(3):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Jacob F, Perez Novo C, Bachert C, Van Crombruggen K (2013) Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 9(3):285–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG (2009) Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 23(6):1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Miller CM, Boulter NR, Fuller SJ, Zakrzewski AM, Lees MP, Saunders BM, Wiley JS, Smith NC (2011) The role of the P2X7 receptor in infectious diseases. PLoS Pathog 7(11):e1002212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, Maree R, Evans RJ, Volders PG, Bours V, Oury C (2009) P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J Immunol 183(4):2801–2809

    Article  CAS  PubMed  Google Scholar 

  190. Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17(11):1381–1390

    Article  CAS  PubMed  Google Scholar 

  191. Grommes J, Soehnlein O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17(3–4):293–307

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

    Article  CAS  PubMed  Google Scholar 

  193. Lecut C, Faccinetto C, Delierneux C, van Oerle R, Spronk HM, Evans RJ, El Benna J, Bours V, Oury C (2012) ATP-gated P2X1 ion channels protect against endotoxemia by dampening neutrophil activation. J Thromb Haemost 10(3):453–465

    Article  CAS  PubMed  Google Scholar 

  194. Engelmann B, Massberg S (2013) Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13(1):34–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn P. Mahaut-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahaut-Smith, M.P., Taylor, K.A., Evans, R.J. (2016). Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_13

Download citation

Publish with us

Policies and ethics