Skip to main content

Self-Healing Coatings for Corrosion Protection of Steel

  • Chapter
  • First Online:
Industrial Applications for Intelligent Polymers and Coatings
  • 3254 Accesses

Abstract

Self-healing coatings belong to a new generation of smart coatings for corrosion control, which have both passive characteristics (from matrix material) and active behavior towards the local environment (through incorporated or surface-mounted compounds acting as inhibitors). The coatings provide a rapid release of a repairing material (e.g., a corrosion inhibitor) after changes in coating integrity by mechanical/chemical damage of the coating or by local pH changes occurring near the metallic surface. Within all classes of materials, the one with the largest self-repair potential belongs to polymers since they display more useful properties than any other material. However, besides these materials, inorganic (including mainly silica, titania, zirconia, etc.), organic, or hybrid layers have been successfully used as matrices for self-repairing coatings. On the other hand, the self-healing agents embedded in the matrices belong to different classes varying from natural compounds (tung oil, spar varnish, camphor, linseed oil, etc.) to synthetic ones (isodecyl diphenyl phosphate, 2-mercaptobenzothiazole, alkyl ammonium salts, etc.). In this context, recent advances in preparation and characterization of different self-healing coatings on steel will be reviewed. The main techniques for obtaining self-healing coatings and the challenges for future research will be also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer H (2010) Nat Sci 2(8):873

    Google Scholar 

  2. Taryba M, Lamaka SV, Snihirova D, Ferreira MGS, Montemor MF, Wijting WK, Toews S, Grundmeier G (2011) Electrochim Acta 56:4475

    Article  Google Scholar 

  3. Shchukin DG, Möhwald H (2007) Small 6:926

    Article  Google Scholar 

  4. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Adv Mater 22:5424

    Article  Google Scholar 

  5. Thébault F, Vuillemin B, Oltra R, Ogle K, Allely C (2008) Electrochim Acta 53:5226

    Article  Google Scholar 

  6. Dalbin S, Maurin G, Nogueira RP, Persello J, Pommier N (2005) Surf Coat Technol 194:363

    Article  Google Scholar 

  7. Aramaki K (2003) Corros Sci 45:451

    Article  Google Scholar 

  8. Albert E, Cotolan N, Nagy N, Sáfrán G, Szabó G, Muresan LM, Hórvölgyi Z (2015) Microporous Mesoporous Mater 206:102

    Article  Google Scholar 

  9. Yuan M-R, Lu J-T, Kong G, Che C-S (2011) Surf Coat Technol 205:4507

    Article  Google Scholar 

  10. Jud K, Kausch HH (1979) Polym Bull 1:697

    Article  Google Scholar 

  11. Kalista SJ Jr, Ward TC, Oyetunji Z (2007) Mech Adv Mater Struct 14:391

    Article  Google Scholar 

  12. Keller MW, Hampton K, McLaury B (2013) Wear 307:218

    Article  Google Scholar 

  13. Sababi M, Pan J, Augustsson P-E, Sundell P-E, Claesson PM (2014) Corros Sci 84:189

    Article  Google Scholar 

  14. Wu DY, Meure S, Solomon D (2008) Prog Polym Sci 33:479

    Article  Google Scholar 

  15. http://en.wikipedia.org/wiki/Epoxy. Accessed 5 May 2015

  16. Sauvant-Moynot V, Gonzales S, Kittel J (2008) Prog Org Coat 63:307

    Article  Google Scholar 

  17. Kartsonakis IA, Balaskas AC, Koumoulos EP, Charitidis CA, Kordas GC (2012) Corros Sci 57:30

    Article  Google Scholar 

  18. Trabelsi W, Cecilio P, Ferreira MGS, Montemor MF (2005) Prog Org Coat 54:276

    Article  Google Scholar 

  19. Pepe A, Aparicio M, Duran A, Cere S (2006) J Sol-Gel Sci Technol 39:131

    Article  Google Scholar 

  20. Chenan A, Ramya S, Gorge RP, Kamachi Mudali U (2014) Corrosion 70(5):496

    Article  Google Scholar 

  21. Garcia SJ, Fisher HR, van der Zwaag S (2011) Prog Org Coat 72:211

    Article  Google Scholar 

  22. Zvonkina IJ, Hilt M (2014) Strategies for developing multi-functional, self-healing coatings for corrosion prevention and other functions. In: Abdel Salam Hamdy Makhlouf (ed) Handbook of smart coatings for materials protection. Woodhead publishing series in metals and surface engineering, no 64, p 105

    Google Scholar 

  23. Garcia SJ, Fischer HR (2014) Self-healing polymer systems: properties, synthesis and applications. In: Aguilar De Armas MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing Ltd, p 271

    Google Scholar 

  24. Wang D, Bierwagen GP (2009) Prog Org Coat 64:327

    Article  Google Scholar 

  25. Bohm S, McMurray HN, Powell SM, Worsley DA (2001) Mater Corros 52:896

    Article  Google Scholar 

  26. Hang TTX, Truc TA, Duong NT, Pebère N, Olivier M-G (2012) Prog Org Coat 74:343

    Article  Google Scholar 

  27. Williams G, Geary S, McMurray HN (2012) Corros Sci 57:139

    Article  Google Scholar 

  28. Nemes PI, Zaharescu M, Muresan LM (2013) J Solid State Electrochem 17(2):511

    Article  Google Scholar 

  29. Blejan D, Muresan LM (2013) Mater Corros 64(5):433

    Article  Google Scholar 

  30. Montemor MF, Pinto R, Ferreira MGS (2009) Electrochim Acta 54:5179

    Article  Google Scholar 

  31. Montemor MF, Cabral AM, Zheludkevich ML, Ferreira MGS (2006) Surf Coat Technol 200:2875

    Article  Google Scholar 

  32. Selvakumar N, Jeyasubramanian K, Sharmila R (2012) Prog Org Coat 74:461

    Article  Google Scholar 

  33. Zhang W, Liao LP, Zhao Y (2014) Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, p 287

    Book  Google Scholar 

  34. Choi H, Song YK, Kim KY, Park JM (2012) Surf Coat Technol 206:2354

    Article  Google Scholar 

  35. Kouhi M, Mohebbi A, Mirzaei M, Peikari M (2013) Prog Org Coat 76:1006

    Article  Google Scholar 

  36. Behzadnasaba M, Esfandeha M, Mirabedinia SM, Zohuriaan-Mehra MJ, Farnood RR (2014) Colloids and Surf A Physicochem Eng Aspects 457:16

    Article  Google Scholar 

  37. Kumar A, Stephenson LD, Muray JN (2006) Prog Org Coat 55:244

    Article  Google Scholar 

  38. Blaiszik BJ, Sottos NR, White SR (2008) Compos Sci Technol 68:978

    Article  Google Scholar 

  39. Falcon JM, Batista FF, Aoki IV (2014) Electrochim Acta 124:109

    Article  Google Scholar 

  40. Toncelli C, De Reus D, Broekhuis AA, Picchioni F (2012) In: Amendola V, Meneghetti M (eds) Self-healing at the nanoscale: mechanisms and key concepts of natural and artificial systems. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 208

    Google Scholar 

  41. Lii CY, Liaw SC, Lai VMF, Tomasik P (2002) Eur Polym J 38:1377

    Article  Google Scholar 

  42. Cao Z, Dong L, Li L, Shang Y, Qi D, Lv Q, Shan G, Ziener U, Landfester K (2012) Langmuir 28(17):7023

    Article  Google Scholar 

  43. Calle LM, Li W (2014) Microencapsulated indicators and inhibitors for corrosion detection and control. In: Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, p 370

    Google Scholar 

  44. Kopeć M, Szczepanowicz K, Mordarski G, Podgórna K, Socha RP, Nowak P, Warszyński P, Hack T (2015) Prog Org Coat 84:97

    Article  Google Scholar 

  45. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Nat Mater 6:581. http://www.nature.com/nmat/journal/v6/n8/abs/nmat1934.html (Last Accessed: May 2015)

  46. Andreeva DV, Skorb EV (2014) Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, p 307

    Book  Google Scholar 

  47. Yuan MR, Lu JT, Kong G (2010) Effect of SiO2. Surf Coat Technol 204:1229

    Article  Google Scholar 

  48. Hosseini SMA, Jafari AH, Jamalizadeh E (2009) Electrochim Acta 54:7207

    Article  Google Scholar 

  49. Jeeva Jothi K, Palanivelu K (2013) Ceram Int 39:7619

    Article  Google Scholar 

  50. Yang Z, Wei Z, Le-ping L, Si-jie W, Wu-jun L (2012) Appl Surf Sci 258:1915

    Article  Google Scholar 

  51. Mehta NK, Bogere MN (2009) Prog Org Coat 64:419

    Article  Google Scholar 

  52. Cabral AM, Trabelsi W, Serra R, Montemor MF, Zheludkevic ML, Ferreira MGS (2006) Corros Sci 48:3740

    Article  Google Scholar 

  53. Samadzadeh M, Hatami Boura S, Pekari M, Ashrafi A, Kasiriha M (2011) Prog Org Coat 70:383

    Article  Google Scholar 

  54. Suryanarayana C, Chowdoji Rao K, Kumar D (2008) Prog Org Coat 63:72

    Article  Google Scholar 

  55. Andreeva DV, Schukin DG (2008) Mater Today 11(10):24

    Article  Google Scholar 

  56. Andreeva DV, Skorb EV, Schukin DG (2010) Appl Mater Interfaces 2:1954

    Article  Google Scholar 

  57. Farhat TR, Schlenoff JB (2002) Electrochem Solid-State Lett 5(4):B13

    Article  Google Scholar 

  58. Falcón JM, Batista FF, Aoki IV (2014) Electrochim Acta 124:109

    Article  Google Scholar 

  59. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Harcourt Brace Jovanovich/Academic Press, Boston, MA, p 2

    Google Scholar 

  60. Barry Carter C, Grant Norton M (2007) Ceramic materials, science and engineering. Springer, New York, NY, p 400

    Google Scholar 

  61. Montemor MF, Trabelsi W, Lamaka SV, Yasakauc KA, Zheludkevich ML, Bastos AC, Ferreira MGS (2008) Electrochim Acta 53:5913

    Article  Google Scholar 

  62. De Lima Neto P, Atik M, Avaca LA, Aegerter MA (1994) J Sol-Gel Sci Technol 2:529

    Article  Google Scholar 

  63. Norzita N, Haziq M, Zurina M (2012) Int J Chem Environ Eng 3(4):267

    Google Scholar 

  64. Aramaki K, Shimura T (2003) Corros Sci 45(11):2639

    Article  Google Scholar 

  65. Hamlaoui Y, Tifouti L, Remazeilles C, Pedraza F (2010) Mater Chem Phys 120:172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Maria Muresan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muresan, L.M. (2016). Self-Healing Coatings for Corrosion Protection of Steel. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_22

Download citation

Publish with us

Policies and ethics