Skip to main content

Measuring Autophagy in the Context of Cancer

  • Conference paper
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 899))

Abstract

Autophagy plays multiple roles in the formation and progression of cancer, including both suppressive and promotive roles. It not only impacts cancer cell growth and viability directly but also has a significant role through its effects on the tumor microenvironment. Measurement of autophagy can be confusing and sometimes misleading due to the inherent difficulty of measuring both the formation and turnover of molecules involved in the autophagic process. The LC3 proteins serve as autophagosomal markers and are the basis for most of the assays used for measuring autophagy. Since each of the current assays for autophagy has significant limitations, the use of multiple assays for the analysis of autophagy in most contexts is highly advised. Here we outline three assays that are commonly used to evaluate autophagic flux in cells. These assays include the determination of LC3II formation and LC3II and p62 turnover by use of Western Blotting, quantification of LC3 puncta, and the measurement of autophagic flux using tandem labeled mCherry-GFP-LC3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21(22):2861–73.

    Article  CAS  PubMed  Google Scholar 

  2. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931–7.

    Article  CAS  PubMed  Google Scholar 

  3. Galluzzi L, Vicencio JM, Kepp O, et al. To die or not to die: that is the autophagic question. Curr Mol Med. 2008;8(2):78–91.

    Article  CAS  PubMed  Google Scholar 

  4. Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10(9):1533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fung C, Lock R, Gao S, Salas E, Debnath J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell. 2008;19(3):797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gump JM, Thorburn A. Autophagy and apoptosis: what is the connection? Trends Cell Biol. 2011;21(7):387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thorburn A, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol. 2014;85(6):830–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shen HM, Codogno P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy. 2011;7(5):457–65.

    Article  CAS  PubMed  Google Scholar 

  9. Gump JM, Staskiewicz L, Morgan MJ, et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol. 2014;16(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  10. Yonekawa T, Gamez G, Kim J, et al. RIP1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis. EMBO Rep. 2015;16(6):700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34(7):856–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 2007;9(10):1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cianfanelli V, Fuoco C, Lorente M, et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol. 2015;17(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  16. Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol. 2006;8(7):688–98.

    Article  CAS  PubMed  Google Scholar 

  17. Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011;25(8):795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marino G, Salvador-Montoliu N, Fueyo A, et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem. 2007;282(25):18573–83.

    Article  CAS  PubMed  Google Scholar 

  19. Strohecker AM, Guo JY, Karsli-Uzunbas G, et al. Autophagy sustains mitochondrial glutamine metabolism and growth of Braf(V600E)-driven lung tumors. Cancer Discov. 2013;3(11):1272–85.

    Article  CAS  PubMed  Google Scholar 

  20. Rao S, Tortola L, Perlot T, et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun. 2014;5:3056.

    Article  PubMed  Google Scholar 

  21. Rosenfeldt MT, O’Prey J, Morton JP, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature. 2013;504(7479):296–300.

    Article  CAS  PubMed  Google Scholar 

  22. Yang A, Rajeshkumar NV, Wang XX, et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 2014;4(8):905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altman BJ, Jacobs SR, Mason EF, et al. Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene. 2011;30(16):1855–67.

    Article  CAS  PubMed  Google Scholar 

  24. Guo JY, Karsli-Uzunbas G, Mathew R, et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013;27(13):1447–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karsli-Uzunbas G, Guo JY, Price S, et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 2014;4(8):914–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xie XQ, Koh JY, Price S, White E, Mehnert JM. Atg7 overcomes senescence and promotes growth of Braf(V600E)-driven melanoma. Cancer Discov. 2015;5(4):410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maycotte P, Aryal S, Cummings CT, et al. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8(2):200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maycotte P, Gearheart CM, Barnard R, et al. STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res. 2014;74(9):2579–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levy JM, Thompson JC, Griesinger AM, et al. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discov. 2014;4(7):773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgan MJ, Gamez G, Menke C, et al. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent. Autophagy. 2014;10(10):1814–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenfeld MR, Ye XB, Supko JG, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10(8):1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahalingam D, Mita M, Sarantopoulos J, et al. Combined autophagy and HDAC inhibition A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy. 2014;10(8):1403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vogl DT, Stadtmauer EA, Tan KS, et al. Combined autophagy and proteasome inhibition A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 2014;10(8):1380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rangwala R, Chang YYC, Hu J, et al. Combined MTOR and autophagy inhibition Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):1391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barnard RA, Wittenburg LA, Amaravadi RK, et al. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy. 2014;10(8):1415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rangwala R, Leone R, Chang YYC, et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):1369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ben Younes A, Tajeddine N, Tailler M, et al. A fluorescence-microscopic and cytofluorometric system for monitoring the turnover of the autophagic substrate p62/SQSTM1. Autophagy. 2011;7(8):883–91.

    Article  CAS  Google Scholar 

  38. Tanida I, Yamaji T, Ueno T, et al. Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls. Autophagy. 2008;4(1):131–4.

    Article  CAS  PubMed  Google Scholar 

  39. Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Morgan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Morgan, M.J., Thorburn, A. (2016). Measuring Autophagy in the Context of Cancer. In: Koumenis, C., Coussens, L., Giaccia, A., Hammond, E. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 899. Springer, Cham. https://doi.org/10.1007/978-3-319-26666-4_8

Download citation

Publish with us

Policies and ethics