Skip to main content

Measuring DNA Replication in Hypoxic Conditions

  • Conference paper
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 899))

Abstract

It is imperative that dividing cells maintain replication fork integrity in order to prevent DNA damage and cell death. The investigation of DNA replication is of high importance as alterations in this process can lead to genomic instability, a known causative factor of tumor development. A simple, sensitive, and informative technique which enables the study of DNA replication, is the DNA fiber assay, an adaptation of which is described in this chapter. The DNA fiber method is a powerful tool, which allows the quantitative and qualitative analysis of DNA replication at the single molecule level. The sequential pulse labeling of live cells with two thymidine analogues and the subsequent detection with specific antibodies and fluorescence imaging allows direct examination of sites of DNA synthesis. In this chapter, we describe how this assay can be performed in conditions of low oxygen levels (hypoxia)—a physiologically relevant stress that occurs in most solid tumors. Moreover, we suggest ways on how to overcome the technical problems that arise while using the hypoxic chambers.

The authors disclose no potential conflicts of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208–19.

    Article  CAS  PubMed  Google Scholar 

  2. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem. 2010;79:89–130.

    Article  CAS  PubMed  Google Scholar 

  3. Dershowitz A, Newlon CS. The effect on chromosome stability of deleting replication origins. Mol Cell Biol. 1993;13:391–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007;21:3331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mcintosh D, Blow JJ. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol. 2012;4.

    Google Scholar 

  6. Schwob E. Flexibility and governance in eukaryotic DNA replication. Curr Opin Microbiol. 2004;7:680–90.

    Article  CAS  PubMed  Google Scholar 

  7. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006;173:673–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, Young RA, Bell SP, Aparicio OM. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science. 2001;294:2357–60.

    Article  CAS  PubMed  Google Scholar 

  9. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16:2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  11. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    CAS  PubMed  Google Scholar 

  12. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440:1222–6.

    Article  CAS  PubMed  Google Scholar 

  13. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.

    Article  CAS  PubMed  Google Scholar 

  14. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.

    Article  CAS  PubMed  Google Scholar 

  15. Hammond EM, Dorie MJ, Giaccia AJ. Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res. 2004;64:6556–62.

    Article  CAS  PubMed  Google Scholar 

  16. Olcina MM, Foskolou IP, Anbalagan S, Senra JM, Pires IM, Jiang Y, Ryan AJ, Hammond EM. Replication stress and chromatin context link ATM activation to a role in DNA replication. Mol Cell. 2013;52:758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pires IM, Bencokova Z, Milani M, Folkes LK, Li JL, Stratford MR, Harris AL, Hammond EM. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res. 2010;70:925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Welford SM, Giaccia AJ. Hypoxia and senescence: the impact of oxygenation on tumor suppression. Mol Cancer Res. 2011;9:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM. ATM activation and signaling under hypoxic conditions. Mol Cell Biol. 2009;29:526–37.

    Article  CAS  PubMed  Google Scholar 

  20. Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol. 2002;22:1834–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.

    Article  CAS  PubMed  Google Scholar 

  22. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio Jr RA, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13.

    Article  CAS  PubMed  Google Scholar 

  23. Hammond EM, Kaufmann MR, Giaccia AJ. Oxygen sensing and the DNA-damage response. Curr Opin Cell Biol. 2007;19:680–4.

    Article  CAS  PubMed  Google Scholar 

  24. Marechal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5.

    Google Scholar 

  25. Nam EA, Cortez D. ATR signalling: more than meeting at the fork. Biochem J. 2011;436:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bianco JN, Poli J, Saksouk J, Bacal J, Silva MJ, Yoshida K, Lin YL, Tourriere H, Lengronne A, Pasero P. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods. 2012;57:149–57.

    Article  CAS  PubMed  Google Scholar 

  27. Jackson DA, Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol. 1998;140:1285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petes TD, Williamson DH. Fiber autoradiography of replicating yeast DNA. Exp Cell Res. 1975;95:103–10.

    Article  CAS  PubMed  Google Scholar 

  29. Takeuchi F, Hanaoka F, Goto M, Akaoka I, Hori T, Yamada M, Miyamoto T. Altered frequency of initiation sites of DNA replication in Werner’s syndrome cells. Hum Genet. 1982;60:365–8.

    Article  CAS  PubMed  Google Scholar 

  30. Merrick CJ, Jackson D, Diffley JF. Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem. 2004;279:20067–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Hammond lab, past and present, for their assistance in the development of this protocol. DB and EMH are supported by Cancer Research UK (grant awarded to EMH). This work was supported by Cancer Research UK (CR-UK) grant number C38302/A12981, through a Cancer Research UK Oxford Centre Prize DPhil Studentship (awarded to IPF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester M. Hammond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Foskolou, I.P., Biasoli, D., Olcina, M.M., Hammond, E.M. (2016). Measuring DNA Replication in Hypoxic Conditions. In: Koumenis, C., Coussens, L., Giaccia, A., Hammond, E. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 899. Springer, Cham. https://doi.org/10.1007/978-3-319-26666-4_2

Download citation

Publish with us

Policies and ethics