Skip to main content

A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA)

  • Conference paper
  • First Online:
Tumor Microenvironment

Abstract

In silico drug discovery refers to a combination of computational techniques that augment our ability to discover drug compounds from compound libraries. Many such techniques exist, including virtual high-throughput screening (vHTS), high-throughput screening (HTS), and mechanisms for data storage and querying. However, presently these tools are often used independent of one another. In this chapter, we describe a new multimodal in silico technique for the hit identification and lead generation phases of traditional drug discovery. Our technique leverages the benefits of three independent methods—virtual high-throughput screening, high-throughput screening, and structural fingerprint analysis—by using a fourth technique called topological data analysis (TDA). We describe how a compound library can be independently tested with vHTS, HTS, and fingerprint analysis, and how the results can be transformed into a topological data analysis network to identify compounds from a diverse group of structural families. This process of using TDA or similar clustering methods to identify drug leads is advantageous because it provides a mechanism for choosing structurally diverse compounds while maintaining the unique advantages of already established techniques such as vHTS and HTS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9–20. doi:10.1038/sj.bjp.0707305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drews J. Drug discovery: a historical perspective. Science. 2000;287(5460):1960–4.

    Article  CAS  PubMed  Google Scholar 

  3. Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol Rev. 2014;66(1):334–95. doi:10.1124/pr.112.007336.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Drie JH. Computer-aided drug design: the next 20 years. J Comput Aided Mol Des. 2007;21(10-11):591–601. doi:10.1007/s10822-007-9142-y.

    Article  CAS  PubMed  Google Scholar 

  5. Talele TT, Khedkar SA, Rigby AC. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem. 2010;10(1):127–41.

    Article  CAS  PubMed  Google Scholar 

  6. Bains W. Failure rates in drug discovery and development: will we ever get any better? 2004.

    Google Scholar 

  7. Agarwal AK, Fishwick CW. Structure-based design of anti-infectives. Ann N Y Acad Sci. 2010;1213:20–45. doi:10.1111/j.1749-6632.2010.05859.x.

    Article  CAS  PubMed  Google Scholar 

  8. Golebiowski A, Klopfenstein SR, Portlock DE. Lead compounds discovered from libraries. Curr Opin Chem Biol. 2001;5(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  9. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, et al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem. 2002;45(11):2213–21.

    Article  CAS  PubMed  Google Scholar 

  10. Carlsson G. Topology and Data. Bull Amer Math Soc. 2009;46:255–308.

    Article  Google Scholar 

  11. Singh G, Memoli F, Carlsson G. Topological methods for the analysis of high dimensional data sets and 3D object recognition. Eurograph Symp Point Based Graph. 2007.

    Google Scholar 

  12. Lum PY, Singh G, Lehman A, Ishkanov T, Vejdemo-Johansson M, Alagappan M, et al. Extracting insights from the shape of complex data using topology. Sci Rep. 2013;3:1236. doi:10.1038/srep01236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sarikonda G, Pettus J, Phatak S, Sachithanantham S, Miller JF, Wesley JD, et al. CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes. J Autoimmun. 2014;50:77–82. doi:10.1016/j.jaut.2013.12.003.

    Article  CAS  PubMed  Google Scholar 

  14. Jain AN. Virtual screening in lead discovery and optimization. Curr Opin Drug Discov Devel. 2004;7(4):396–403.

    CAS  PubMed  Google Scholar 

  15. Ghosh S, Nie A, An J, Huang Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol. 2006;10(3):194–202. doi:10.1016/j.cbpa.2006.04.002.

    Article  CAS  PubMed  Google Scholar 

  16. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):213–21. doi:10.1107/S0907444909052925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dutta S, Burkhardt K, Swaminathan GJ, Kosada T, Henrick K, Nakamura H, et al. Data deposition and annotation at the worldwide protein data bank. Methods Mol Biol. 2008;426:81–101. doi:10.1007/978-1-60327-058-8_5.

    Article  CAS  PubMed  Google Scholar 

  18. Evers A, Gohlke H, Klebe G. Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol. 2003;334(2):327–45.

    Article  CAS  PubMed  Google Scholar 

  19. Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharmacol. 2009;9(5):580–8. doi:10.1016/j.coph.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  20. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, et al. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A. 2006;103(31):11473–8. doi:10.1073/pnas.0604348103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design--a review. Curr Top Med Chem. 2010;10(1):95–115.

    Article  CAS  PubMed  Google Scholar 

  22. Kubinyi H. 3D QSAR in drug design. In: Theory methods and applications, vol 1. New York: Springer; 1993.

    Google Scholar 

  23. Bolton E, Wang Y, Thiessen P, Bryant S. PubChem: Integrated platform of small molecules and biological activities. Annual Reports in Computational Chemistry. 2008;4:217–241.

    Google Scholar 

  24. Riniker S, Wang Y, Jenkins JL, Landrum GA. Using information from historical high-throughput screens to predict active compounds. J Chem Inf Model. 2014;54(7):1880–91. doi:10.1021/ci500190p.

    Article  CAS  PubMed  Google Scholar 

  25. Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev. 1997;49(4):403–49.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. Koong M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alagappan, M., Jiang, D., Denko, N., Koong, A.C. (2016). A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA). In: Koumenis, C., Coussens, L., Giaccia, A., Hammond, E. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 899. Springer, Cham. https://doi.org/10.1007/978-3-319-26666-4_15

Download citation

Publish with us

Policies and ethics