Skip to main content

Isolation of Glioma-Initiating Cells for Biological Study

  • Conference paper
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 899))

Abstract

Glioblastoma multiforme (GBM, WHO grade IV astrocytoma) is the most common and lethal primary brain tumor in adults, with an average survival of slightly more than 1 year after initial diagnosis. GBMs display significant heterogeneity within the tumor mass, among which a subpopulation of cells called glioma-initiating cells (GICs) is responsible for tumorigenesis and resistance to conventional therapies. Therefore, understanding the mechanism underlying the biological properties of GICs would help develop better therapies to target this population for GBM treatment. This protocol provides detailed procedures to isolate GICs and non-GICs from patient’s specimen and glioma xenografts, which serves as the first step for the biological studies of GICs. Upon separation of GICs and non-GICs, a series of studies, such as expression profiling and functional screen, etc., can be performed to identify signal pathways responsible for the malignant nature of GICs. Besides, translational studies can also be conducted to examine drug responses of GICs. In sum, isolation of GICs with reliable methods will provide the basis for the further biological studies.

The authors have declared that no conflict of interest exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16 Suppl 4:p. iv1–63.

    Google Scholar 

  2. Singh SK et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  CAS  PubMed  Google Scholar 

  3. Bao S et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  CAS  PubMed  Google Scholar 

  4. Bao SD et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  CAS  PubMed  Google Scholar 

  5. Eramo A et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006;13(7):1238–41.

    Article  CAS  PubMed  Google Scholar 

  6. Chen J et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang H et al. miR-33a promotes glioma-initiating cell self-renewal via PKA and NOTCH pathways. J Clin Investig. 2014;124(10):4489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu J et al. MiR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell. 2016;29(1):49–60.

    Google Scholar 

  9. Ernst A et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res. 2009;15(21):6541–50.

    Article  CAS  PubMed  Google Scholar 

  10. Schraivogel D et al. CAMTA1 is a novel tumour suppressor regulated by miR-9/9*in glioblastoma stem cells. EMBO J. 2011;30(20):4309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin AH et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.

    CAS  PubMed  Google Scholar 

  12. Peichev M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–8.

    CAS  PubMed  Google Scholar 

  13. Uchida N et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97(26):14720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol. 2013;15(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  15. Beier D et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010–5.

    Article  CAS  PubMed  Google Scholar 

  16. Chen R et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17(4):362–75.

    Article  CAS  PubMed  Google Scholar 

  17. Son MJ et al. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell. 2009;4(5):440–52.

    Article  CAS  PubMed  Google Scholar 

  18. Read TA et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma (vol 15, pg 135, 2009). Cancer Cell. 2009;16(3):267–7.

    Google Scholar 

  19. Suva ML et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157(3):580–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhat KP et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24(3):331–46.

    Article  CAS  PubMed  Google Scholar 

  21. Lee J et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9(5):391–403.

    Article  CAS  PubMed  Google Scholar 

  22. Lathia JD et al. Integrin Alpha 6 regulates glioblastoma stem cells. Cell Stem Cell. 2010;6(5):421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A. 2004;101(3):781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, J., Markowitz, G., Wang, XF. (2016). Isolation of Glioma-Initiating Cells for Biological Study. In: Koumenis, C., Coussens, L., Giaccia, A., Hammond, E. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 899. Springer, Cham. https://doi.org/10.1007/978-3-319-26666-4_11

Download citation

Publish with us

Policies and ethics