Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 502 Accesses

Abstract

In this thesis, the long standing goal [111] of full control over the position and motion of an atom trapped in a cavity has been achieved by implementing a three-dimensional optical lattice within the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Vernooy, H. Kimble, Well-dressed states for wave-packet dynamics in cavity QED. Phys. Rev. A 56(5), 4287–4295 (1997). ISSN: 1050-2947, 1094-1622. doi:10.1103/PhysRevA.56.4287. http://authors.library.caltech.edu/3240/

    Google Scholar 

  2. J. Ye, D.W. Vernooy, H.J. Kimble, Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83(24), 4987–4990 (1999). doi:10.1103/PhysRevLett.83.4987. http://link.aps.org/doi/10.1103/PhysRevLett.83.4987

    Google Scholar 

  3. P.W.H. Pinkse et al., Trapping an atom with single photons. Nature 404(6776), 365–368 (2000). ISSN: 0028-0836. doi:10.1038/35006006. http://dx.doi.org/10.1038/35006006

    Google Scholar 

  4. T. Fischer et al., Feedback on the motion of a single atom in an optical cavity. Phys. Rev. Lett. 88(16), 163002 (2002), 00106. doi:10.1103/PhysRevLett.88.163002. http://link.aps.org/doi/10.1103/PhysRevLett.88.163002

  5. J. McKeever et al., State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90(13), 133602 (2003), 00324. doi:10.1103/PhysRevLett.90.133602. http://link.aps.org/doi/10.1103/PhysRevLett.90.133602

  6. P. Maunz et al., Cavity cooling of a single atom. Nature 428(6978), 50–52 (2004). ISSN: 0028-0836. doi:10.1038/nature02387. http://dx.doi.org/10.1038/nature02387

    Google Scholar 

  7. S. Nußmann et al., Vacuum-stimulated cooling of single atoms in three dimensions. Nature Phys. 1(2), 122–125 (2005). ISSN: 1745-2473. doi:10.1038/nphys120. http://www.nature.com/nphys/journal/v1/n2/abs/nphys120.html

    Google Scholar 

  8. A.D. Boozer et al., Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97(8), 083602 (2006). doi:10.1103/PhysRevLett.97.083602. http://link.aps.org/doi/10.1103/PhysRevLett.97.083602

  9. A. Kubanek et al., Photon-by-photon feedback control of a single-atom trajectory. Nature 462(7275), 898–901 (2009). ISSN: 0028-0836. doi:10.1038/nature08563. http://dx.doi.org/10.1038/nature08563

    Google Scholar 

  10. M. Koch et al., Feedback cooling of a single neutral atom. Phys. Rev. Lett. 105(17), 173003 (2010), 00034. doi:10.1103/PhysRevLett.105.173003. http://link.aps.org/doi/10.1103/PhysRevLett.105.173003

  11. T. Kampschulte et al., Electromagnetically-induced-transparency control of single-atom motion in an optical cavity. Phys. Rev. A 89(3), 033404 (2014), 00000. doi:10.1103/PhysRevA.89.033404. http://link.aps.org/doi/10.1103/PhysRevA.89.033404

  12. S. Kuhr et al., Deterministic delivery of a single atom. Science 293(5528), 278–280 (2001). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1062725. http://www.sciencemag.org/content/293/5528/278

    Google Scholar 

  13. S. Nußmann et al., Submicron positioning of single atoms in a microcavity. Phys. Rev. Lett. 95(17), 173602 (2005). doi:10.1103/PhysRevLett.95.173602. http://link.aps.org/doi/10.1103/PhysRevLett.95.173602

  14. A. Reiserer et al., Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110(22), 223003 (2013). doi:10.1103/PhysRevLett.110.223003. http://link.aps.org/doi/10.1103/PhysRevLett.110.223003

  15. H. Zeng, F. Lin, Quantum conversion between the cavity fields and the center-of-mass motion of ions in a quantized trap. Phys. Rev. A 50(5), R3589–R3592 (1994), 00074. doi:10.1103/PhysRevA.50.R3589. http://link.aps.org/doi/10.1103/PhysRevA.50.R3589

    Google Scholar 

  16. A.S. Parkins, H. J. Kimble, Quantum state transfer between motion and light. J. Opt. B: Quantum and Semiclassical Opt. 1(4), 496–504 (1999). ISSN: 1464-4266, 1741-3575. doi:10.1088/1464-4266/1/4/323. http://iopscience.iop.org/1464-4266/1/4/323

    Google Scholar 

  17. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014), 00002. doi:10.1103/RevModPhys.86.1391. http://link.aps.org/doi/10.1103/RevModPhys.86.1391

    Google Scholar 

  18. P. Rabl, Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107(6), 063601 (2011). doi:10.1103/PhysRevLett.107.063601. http://link.aps.org/doi/10.1103/PhysRevLett.107.063601

  19. A. Nunnenkamp, K. Børkje, S.M. Girvin, Single-photon optomechanics. Phys. Rev. Lett. 107(6), 063602 (2011), 00129. doi:10.1103/PhysRevLett.107.063602. http://link.aps.org/doi/10.1103/PhysRevLett.107.063602

  20. H.P. Specht et al., A single-atom quantum memory. Nature 473(7346), 190–193 (2011), 00128. ISSN: 0028-0836. doi:10.1038/nature09997. http://dx.doi.org/10.1038/nature09997

    Google Scholar 

  21. S. Ritter et al., An elementary quantum network of single atoms in optical cavities. Nature 484(7393), 195–200 (2012). ISSN: 0028-0836. doi:10.1038/nature11023. http://www.nature.com/nature/journal/v484/n7393/abs/nature11023.html

    Google Scholar 

  22. C. Nölleke et al., Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110(14), 140403 (2013), 00034. doi:10.1103/PhysRevLett.110.140403. http://link.aps.org/doi/10.1103/PhysRevLett.110.140403

  23. T. Pellizzari et al., Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75(21), 3788–3791 (1995). doi:10.1103/PhysRevLett.75.3788. http://link.aps.org/doi/10.1103/PhysRevLett.75.3788

    Google Scholar 

  24. Anders S. Sørensen, K. Mølmer, Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91(9), 097905 (2003). doi:10.1103/PhysRevLett.91.097905. http://link.aps.org/doi/10.1103/PhysRevLett.91.097905

  25. A.S. Sørensen, K. Mølmer, Probabilistic generation of entanglement in optical cavities. Phys. Rev. Lett. 90(12), 127903 (2003), 00063. doi:10.1103/PhysRevLett.90.127903. http://link.aps.org/doi/10.1103/PhysRevLett.90.127903

  26. M.J. Kastoryano, F. Reiter, A.S. Sørensen, Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106(9), 090502 (2011), 00096. doi:10.1103/PhysRevLett.106.090502. http://link.aps.org/doi/10.1103/PhysRevLett.106.090502

  27. G. Nikoghosyan, M.J. Hartmann, M. B. Plenio, Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108(12), 123603 (2012). doi:10.1103/PhysRevLett.108.123603. http://link.aps.org/doi/10.1103/PhysRevLett.108.123603

  28. L.-M. Duan, H.J. Kimble, Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004), 00427. doi:10.1103/PhysRevLett.92.127902. http://link.aps.org/doi/10.1103/PhysRevLett.92.127902

  29. A. Reiserer, S. Ritter, G. Rempe, Nondestructive detection of an optical photon. Science 342(6164), 1349–1351 (2013). doi:10.1126/science.1246164. http://www.sciencemag.org/content/342/6164/1349

    Google Scholar 

  30. A. Reiserer et al., A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237–240 (2014), 00010. ISSN: 0028-0836. doi:10.1038/nature13177. http://www.nature.com/nature/journal/v508/n7495/full/nature13177.html

    Google Scholar 

  31. B. Wang, L.-M. Duan, Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction. Phys. Rev. A 72(2), 022320 (2005). doi:10.1103/PhysRevA.72.022320. http://link.aps.org/doi/10.1103/PhysRevA.72.022320

  32. Y.-F. Xiao et al., Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70(4), 042314 (2004). doi:10.1103/PhysRevA.70.042314. http://link.aps.org/doi/10.1103/PhysRevA.70.042314

  33. J. Cho, H.-W. Lee, Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95(16), 160501 (2005). doi:10.1103/PhysRevLett.95.160501. http://link.aps.org/doi/10.1103/PhysRevLett.95.160501

  34. L.-M. Duan, B. Wang, H. J. Kimble, Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72(3), 032333 (2005), 00155. doi:10.1103/PhysRevA.72.032333. http://link.aps.org/doi/10.1103/PhysRevA.72.032333

  35. P. Xue, Y.-F. Xiao, Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97(14), 140501 (2006), 00061. doi:10.1103/PhysRevLett.97.140501. http://link.aps.org/doi/10.1103/PhysRevLett.97.140501

  36. W.J. Munro et al., Quantum communication without the necessity of quantum memories. en. Nature Photonics 6(11), 777–781 (2012). ISSN: 1749-4885. doi:10.1038/nphoton.2012.243. http://www.nature.com/nphoton/journal/v6/n11/full/nphoton.2012.243.html

    Google Scholar 

  37. C. Bonato et al., CNOT and bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104(16), 160503 (2010), 00112. doi:10.1103/PhysRevLett.104.160503. http://link.aps.org/doi/10.1103/PhysRevLett.104.160503

  38. S. Olmschenk et al., Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009). doi:10.1126/science.1167209. http://www.sciencemag.org/content/323/5913/486.abstract

    Google Scholar 

  39. C. Nölleke, Quantum state transfer between remote single atoms. 00000. PhD thesis. Technische Universität München, 2013. http://mediatum.ub.tum.de/node?id=1145613

  40. H.-J. Briegel et al., Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932–5935 (1998), 01541. doi:10.1103/PhysRevLett.81.5932. http://link.aps.org/doi/10.1103/PhysRevLett.81.5932

    Google Scholar 

  41. L.-M. Duan, C. Monroe, Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010). doi:10.1103/RevModPhys.82.1209. http://link.aps.org/doi/10.1103/RevModPhys.82.1209

    Google Scholar 

  42. H.J. Kimble, The quantum internet. Nature 453(7198), 1023–1030 (2008). ISSN:0028-0836. doi:10.1038/nature07127. http://dx.doi.org/10.1038/nature07127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Reiserer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reiserer, A. (2016). Summary and Outlook. In: A Controlled Phase Gate Between a Single Atom and an Optical Photon. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26548-3_7

Download citation

Publish with us

Policies and ethics