Skip to main content

Measurement and Control of the Internal Atomic State

  • Chapter
  • First Online:
A Controlled Phase Gate Between a Single Atom and an Optical Photon

Part of the book series: Springer Theses ((Springer Theses))

  • 521 Accesses

Abstract

The controlled phase gate mechanism that is implemented in this thesis is based on an atomic three-level system, where two of the levels are strongly coupled via the cavity, while the other level is far detuned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.-Y. Shih, M.S. Chapman, Nondestructive light-shift measurements of single atoms in optical dipole traps. Phys. Rev. A 87(6), 063408 (2013), 00003. doi:10.1103/PhysRevA.87.063408. http://link.aps.org/doi/10.1103/PhysRevA.87.063408

  2. A. Reiserer, S. Ritter, G. Rempe, Nondestructive detection of an optical photon. Science 342(6164), 1349–1351 (2013). doi:10.1126/science.1246164. http://www.sciencemag.org/content/342/6164/1349

    Google Scholar 

  3. A. D. Boozer et al., Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97(8), 083602 (2006). doi:10.1103/PhysRevLett.97.083602. http://link.aps.org/doi/10.1103/PhysRevLett.97.083602

  4. J. Bochmann et al., Lossless state detection of single neutral atoms. Phys. Rev. Lett. 104(20), 203601 (2010), 00051. doi:10.1103/PhysRevLett.104.203601. http://link.aps.org/doi/10.1103/PhysRevLett.104.203601

  5. R. Gehr et al., Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104(20), 203602 (2010). doi:10.1103/PhysRevLett.104.203602. http://link.aps.org/doi/10.1103/PhysRevLett.104.203602

  6. A. Reiserer et al., A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237–240 (2014), 00010. ISSN: 0028-0836.doi:10.1038/nature13177. http://www.nature.com/nature/journal/v508/n7495/full/nature13177.html

    Google Scholar 

  7. W. Nagourney, J. Sandberg, H. Dehmelt, Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 56(26), 2797–2799 (1986). doi:10.1103/PhysRevLett.56.2797. http://link.aps.org/doi/10.1103/PhysRevLett.56.2797

    Google Scholar 

  8. J.C. Bergquist et al., Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57(14), 1699–1702 (1986). doi:10.1103/PhysRevLett.57.1699. http://link.aps.org/doi/10.1103/PhysRevLett.57.1699

    Google Scholar 

  9. D. Leibfried et al., Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281 (2003). doi:10.1103/RevModPhys.75.281. http://link.aps.org/doi/10.1103/RevModPhys.75.281

    Google Scholar 

  10. D.J. Heinzen, D.J. Wineland, Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Phys. Rev. A 42(5), 2977–2994 (1990), 00230. doi:10.1103/PhysRevA.42.2977. http://link.aps.org/doi/10.1103/PhysRevA.42.2977

    Google Scholar 

  11. C. Monroe et al., Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995), 01678. doi:10.1103/PhysRevLett.75.4714. http://link.aps.org/doi/10.1103/PhysRevLett.75.4714

    Google Scholar 

  12. D.D. Yavuz et al., Fast ground state manipulation of neutral atoms in microscopic optical traps. Phys. Rev. Lett. 96(6), 063001 (2006). doi:10.1103/PhysRevLett.96.063001. http://link.aps.org/doi/10.1103/PhysRevLett.96.063001

  13. M.P.A. Jones et al. Fast quantum state control of a single trapped neutral atom. Phys. Rev. A 75(4), 040301 (2007). doi:10.1103/PhysRevA.75.040301. http://link.aps.org/doi/10.1103/PhysRevA.75.040301

  14. I.Dotsenko et al., Application of electro-optically generated light fields for Raman spectroscopy of trapped cesium atoms. Appl. Phys. B 78(6), 711–717 (2004). ISSN: 0946–2171, 1432–0649.doi:10.1007/s00340-004-1467-9. http://link.springer.com/article/10.1007/s00340-004-1467-9

    Google Scholar 

  15. A. Reiserer et al., Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110(22), 223003 (2013). doi:10.1103/PhysRevLett.110.223003. http://link.aps.org/doi/10.1103/PhysRevLett.110.223003

  16. R. Grimm, M. Weidemüller, Y. B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95-170 Academic Press (2000) ISBN: 978-0-12-003842-8. http://www.sciencedirect.com/science/article/pii/S1049250X0860186X

  17. W. Rosenfeld et al, Coherence of a qubit stored in Zeeman levels of a single optically trapped atom. Phys. Rev. A 84(2), 022343 (2011). doi:10.1103/PhysRevA.84.022343. http://link.aps.org/doi/10.1103/PhysRevA.84.022343

  18. H.P. Specht et al., A single-atom quantum memory’. Nature 473(7346), 190–193 (2011), 00128. ISSN: 0028-0836.doi:10.1038/nature09997. http://dx.doi.org/10.1038/nature09997

    Google Scholar 

  19. H. Specht, Einzelatom-quantenspeicher für polarisations-qubits. PhD thesis. Technische Universität München, 2010. http://mediatum.ub.tum.de/node?id=1002627

  20. L. Viola, E. Knill, S. Lloyd, Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82(12), 2417–2421 (1999). doi:10.1103/PhysRevLett.82.2417. http://link.aps.org/doi/10.1103/PhysRevLett.82.2417

    Google Scholar 

  21. G.S. Uhrig, Keeping a quantum bit alive by optimized pi-pulse sequences. Phys. Rev. Lett. 98(10), 100504 (2007). doi:10.1103/PhysRevLett.98.100504. http://link.aps.org/doi/10.1103/PhysRevLett.98.100504

  22. M.J. Biercuk et al., Optimized dynamical decoupling in a model quantum memory. Nature 458(7241), 996-1000 (2009). ISSN: 0028-0836. doi:10.1038/nature07951. http://www.nature.com/nature/journal/v458/n7241/full/nature07951.html

    Google Scholar 

  23. L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation. Rev. Mod. Phys. 76(4), 1037–1069 (2005). doi:10.1103/RevModPhys.76.1037. http://link.aps.org/doi/10.1103/RevModPhys.76.1037

    Google Scholar 

  24. G.de Lange et al., Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330(6000), 60–63 (2010). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1192739. http://www.sciencemag.org/content/330/6000/60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Reiserer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reiserer, A. (2016). Measurement and Control of the Internal Atomic State. In: A Controlled Phase Gate Between a Single Atom and an Optical Photon. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26548-3_3

Download citation

Publish with us

Policies and ethics