Skip to main content

Non-negative Spectral Learning for Linear Sequential Systems

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Included in the following conference series:

  • 1718 Accesses

Abstract

Method of moments (MoM) has recently become an appealing alternative to standard iterative approaches like Expectation Maximization (EM) to learn latent variable models. In addition, MoM-based algorithms come with global convergence guarantees in the form of finite sample bounds. However, given enough computation time, by using restarts and heuristics to avoid local optima, iterative approaches often achieve better performance. We believe that this performance gap is in part due to the fact that MoM-based algorithms can output negative probabilities. By constraining the search space, we propose a non-negative spectral algorithm (NNSpectral) avoiding computing negative probabilities by design. NNSpectral is compared to other MoM-based algorithms and EM on synthetic problems of the PAutomaC challenge. Not only, NNSpectral outperforms other MoM-based algorithms, but also, achieves very competitive results in comparison to EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models (2012). arXiv preprint arXiv:1210.7559

  2. Bailly, R., Denis, F.: Absolute convergence of rational series is semi-decidable. Inf. Comput. 209(3), 280–295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bailly, R., Habrard, A., Denis, F.: A spectral approach for probabilistic grammatical inference on trees. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) Algorithmic Learning Theory. LNCS, vol. 6331, pp. 74–88. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Balle, B.: Learning finite-state machines: algorithmic and statistical aspects. Ph.D. thesis (2013)

    Google Scholar 

  5. Balle, B., Hamilton, W., Pineau, J.: Methods of moments for learning stochastic languages: unified presentation and empirical comparison. In: Proceedings of ICML-14, pp. 1386–1394 (2014)

    Google Scholar 

  6. Balle, B., Quattoni, A., Carreras, X.: Local loss optimization in operator models: a new insight into spectral learning. In: Proceedings of ICML-12 (2012)

    Google Scholar 

  7. Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. J. Comput. Syst. Sci. 5(1), 26–40 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, S.B., Stratos, K., Collins, M., Foster, D.P., Ungar, L.H.: Experiments with spectral learning of latent-variable PCFGs. In: Proceedings of HLT-NAACL-13, pp. 148–157 (2013)

    Google Scholar 

  9. Denis, F., Esposito, Y.: On rational stochastic languages. Fundamenta Informaticae 86(1), 41–77 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Gillis, N.: The Why and How of nonnegative matrix factorization. ArXiv e-prints, January 2014

    Google Scholar 

  11. Glaude, H., Pietquin, O., Enderli, C.: Subspace identification for predictive state representation by nuclear norm minimization. In: Proceedings of ADPRL-14 (2014)

    Google Scholar 

  12. Guterman, A.E.: Rank and determinant functions for matrices over semirings. In: Young, N., Choi, Y. (eds.) Surveys in Contemporary Mathematics, pp. 1–33. Cambridge University Press, Cambridge (2007)

    Chapter  Google Scholar 

  13. Gybels, M., Denis, F., Habrard, A.: Some improvements of the spectral learning approach for probabilistic grammatical inference. In: Proceedings of ICGI-12, vol. 34, pp. 64–78 (2014)

    Google Scholar 

  14. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Thon, M., Jaeger, H.: Links between multiplicity automata, observable operator models and predictive state representations – a unified learning framework learning framework. J. Mach. Learn. Res. (2015, to appear)

    Google Scholar 

  16. Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Verwer, S., Eyraud, R., de la Higuera, C.: Results of the pautomac probabilistic automaton learning competition. J. Mach. Learn. Res. - Proc. Track 21, 243–248 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadrien Glaude .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Glaude, H., Enderli, C., Pietquin, O. (2015). Non-negative Spectral Learning for Linear Sequential Systems. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics