Skip to main content

Semi-supervised Non-negative Local Coordinate Factorization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Included in the following conference series:

Abstract

Non-negative matrix factorization (NMF) is a popular matrix decomposition technique that has attracted extensive attentions from data mining community. However, NMF suffers from the following deficiencies: (1) it is non-trivial to guarantee the representation of the data points to be sparse, and (2) NMF often achieves unsatisfactory clustering results because it completely neglects the labels of the dataset. Thus, this paper proposes a semi-supervised non-negative local coordinate factorization (SNLCF) to overcome the above deficiencies. Particularly, SNLCF induces the sparse coefficients by imposing the local coordinate constraint and propagates the labels of the labeled data to the unlabeled ones by indicating the coefficients of the labeled examples to be the class indicator. Benefit from the labeled data, SNLCF can boost NMF in clustering the unlabeled data. Experimental results on UCI datasets and two popular face image datasets suggest that SNLCF outperforms the representative methods in terms of both average accuracy and average normalized mutual information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, D., Zhu, P., Hu, Q.: A linear subspace learning approach via sparse coding. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 755–761. IEEE (2011)

    Google Scholar 

  2. Punj, G., Stewart, D.W.: Cluster analysis in marketing research: review and suggestions for application. J. Market. Res. 20(2), 134–148 (1983)

    Article  Google Scholar 

  3. Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1088–1099 (2006)

    Article  Google Scholar 

  4. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM (1999)

    Google Scholar 

  5. Guan, N., Tao, D., Luo, Z., Yuan, B.: Non-negative patch alignment framework. IEEE Trans. Neural Netw. 22(8), 1218–1230 (2011)

    Article  Google Scholar 

  6. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  7. Ding, C., Li, T., Peng, W.: On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing. Comput. Stat. Data Anal. 52(8), 3913–3927 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric mean for subspace selection. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)

    Article  Google Scholar 

  9. Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557–565. IEEE (2002)

    Google Scholar 

  10. Li, S.Z., Hou, X., Zhang, H., Cheng, Q.: Learning spatially localized, parts-based representation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I-207. IEEE (2001)

    Google Scholar 

  11. Guan, N., Zhang, X., Luo, Z., Tao, D., Yang, X.: Discriminant projective non-negative matrix factorization. PLoS ONE 8(12), e83291 (2013)

    Article  Google Scholar 

  12. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Yuan, Z., Oja, E.: Projective nonnegative matrix factorization for image compression and feature extraction. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 333–342. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Chen, Y., Zhang, J., Cai, D., Liu, W., He, X.: Nonnegative local coordinate factorization for image representation. IEEE Trans. Image Process. 22(3), 969–979 (2013)

    Article  MathSciNet  Google Scholar 

  15. Wang, C., Yan, S., Zhang, L., Zhang, H.: Non-negative semi-supervised learning. In: International Conference on Artificial Intelligence and Statistics, pp. 575–582 (2009)

    Google Scholar 

  16. Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Signal Process. 60(6), 2882–2898 (2012)

    Article  MathSciNet  Google Scholar 

  17. Cho, Y., Saul, L.K.: Nonnegative matrix factorization for semi-supervised dimensionality reduction (2011). arXiv preprint arXiv:1112.3714

  18. Liu, H., Wu, Z.: Non-negative matrix factorization with constraints. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  19. Chen, Y., Rege, M., Dong, M., Hua, J.: Non-negative matrix factorization for semi-supervised data clustering. Knowl. Inf. Syst. 17(3), 355–379 (2008)

    Article  Google Scholar 

  20. Wechsler, H.: Face Recognition: From Theory to Applications, vol. 163. Springer, Heidelberg (1998)

    Book  Google Scholar 

  21. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  22. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: Advances in Neural Information Processing Systems, pp. 2223–2231 (2009)

    Google Scholar 

  23. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367. IEEE (2010)

    Google Scholar 

  24. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  25. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  26. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National High Technology Research and Development Program (“863” Program) of China (under grant No. 2015AA020108) and National Natural Science Foundation of China (under grant No. 61502515).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naiyang Guan or Zhigang Luo .

Editor information

Editors and Affiliations

Appendix A: Proof of Theorem 2.1

Appendix A: Proof of Theorem 2.1

For any entry \({{u}_{ab}}\) in U , we use \({{F}_{ab}}\) to denote the related terms of the objective O with \({{u}_{ab}}\). The partial derivatives of O over \({{u}_{ab}}\) is:

$$\begin{aligned} F'_{ab} = \frac{{\partial O}}{{\partial {U_{ab}}}} = {((2UV{V^T} - 2X{V^T}) + \beta \sum \limits _{i = 1}^{{n_u}} {( - 2x^u_i{1^T}{\varLambda _i} + 2U{\varLambda _i})} )_{ab}}, \end{aligned}$$
(7)

where \({\varLambda _i} = diag({v^u_i}) \in {R^{k \times k}}\).

According to (7) and [25], we construct the auxiliary function of \({F_{ab}}\) as follows

$$\begin{aligned} G\left( {u,u_{ab}^{\left( t \right) }} \right)&= {F_{ab}}\left( {u_{ab}^{\left( t \right) }} \right) + F_{ab}'\left( {u_{ab}^{\left( t \right) }} \right) \left( {u - u_{ab}^{\left( t \right) }} \right) \nonumber \\&\quad +\frac{{{{\left( {UV{V^T}} \right) }_{ab}} + \beta \sum \limits _{i = 1}^{{n_u}} {{{\left( {U{\varLambda _i}} \right) }_{ab}}} }}{{u_{ab}^{\left( t \right) }}}{\left( {u - u_{ab}^{\left( t \right) }} \right) ^2}. \end{aligned}$$
(8)

By setting the derivatives of (8) to zero, we can obtain the update rule (4). Similarly, we can obtain the update rules (5) and (6) for \(V_u\) and \(V_l\), respectively.

According to the property of the auxiliary function [25], we can obtain

$$\begin{aligned} O\left( {{U^{\left( {t + 1} \right) }},{V^{\left( {t + 1} \right) }}} \right) \le O\left( {{U^{\left( t \right) }},{V^{\left( t \right) }}} \right) \le O\left( {{U^{\left( {t - 1} \right) }},{V^{\left( {t - 1} \right) }}} \right) \!. \end{aligned}$$
(9)

Based on (9), this MUR can guarantee the objective to be non-increased. Meanwhile, the equalition (9) holds when their sub-gradients of objective (3) are zeros. Thus, this MUR can converge to local minima of SNLCF. This completes the proof.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, C., Zhang, X., Guan, N., Huang, X., Luo, Z. (2015). Semi-supervised Non-negative Local Coordinate Factorization. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics