Skip to main content

Processing and Characterization of Natural Polymers

  • Chapter
  • First Online:
Natural Polymers

Abstract

This chapter covers recent techniques applied in processing and characterization of natural polymers. This includes techniques in processing natural polymers from their natural forms into modified forms for more varied application and functionality. It also looks at techniques for processing modified and unmodified natural polymers for various purposes such as film formation for transdermal patches, composite and blends production to form films with improved mechanical properties, magnetic decoration for production of tough membranes with magnetic properties. The characterization methods covered in this chapter include X-ray diffraction, microscopy, and Fourier transform infrared spectrometry. We look at recent reported processing and characterization techniques which are applicable to the major industries today for natural polymer-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F et al (1999) Physico-chemical characterization of sago starch. Carbohydr Polym 38:361–370

    Article  CAS  Google Scholar 

  • Andreuccetti C et al (2012) Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: a preliminary study. J Food Eng 113:33–40

    Article  CAS  Google Scholar 

  • Belton P, Tanner S, Cartier N, Chanzy H (1989) High-resolution solid-state C-13 nuclear magnetic-resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22(4):1615–1617

    Article  CAS  Google Scholar 

  • Bergthaller W et al (1999) Processing and characterization of biodegradable products based on starch and cellulose fibers. ACS Symp 723:14–38 

    Article  CAS  Google Scholar 

  • Blaker JJ, Lee KY, Walters M, Drouet M, Bismarck A (2015) Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites. Reactive and Functional Polymers. (in Press)

    Google Scholar 

  • Bovey F (1972) High resolution NMR of macromolecules. Academic Press, New York

    Google Scholar 

  • Burchard W, Meuser F (1993) Plant polymeric carbohydrates. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Cao X, Jiang M, Yu T (1989) Controllable specific interaction and miscibility in polymer blends, hydrogen bonding and morphology. Macromolecular Chem 190:117–1128

    Article  CAS  Google Scholar 

  • Carr H, Purcell B (1954) Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phy Rev 94(630)

    Google Scholar 

  • Cazacu G, Popa V (2005) Blends and composites based on cellulose materials. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 1141–1177

    Google Scholar 

  • Cerqueira E, Baptista C, Mulinari D (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Eng Precidia 10:2046–2051

    Article  CAS  Google Scholar 

  • Chaudhury M (1995) Self-assembled monolayers on polymer surfaces. Biosens Bioelectron 10:785–788

    Article  CAS  Google Scholar 

  • Cho H et al (2012) Effect of molecular weight and storage time on the wet and electrospinning of regenerated silk fibroin. Polym Degrad Stab 97(6):1060–1066

    Article  CAS  Google Scholar 

  • Choi C et al (2013) Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Europesn J Pharmaceutics Biopharmaceutics 83(2):224–233

    Article  CAS  Google Scholar 

  • Chumeka W, Pasetto P, Pilard JF (2014) Bio-based triblock copolymers from natural rubber and poly (lactic acid): Synthesis and application in polymer blending. Polym 55:4478–4487

    Google Scholar 

  • Crowley M, Zhang F, Repka M (2007) Pharmaceutical applications of hot melt extrusion part ! Drug Delivery Ind Pharm 33:909–926

    Article  CAS  Google Scholar 

  • Da Roz A et al (2010) Adsorption of chitosan on spin-coated cellulose films. Carbohydr Polym 80(1):65–70

    Article  Google Scholar 

  • De Guzman M et al (2011) Effect of compatibilizer on compatibility and pervaporation performance of PC/PHEMA blend membranes. J Membr Sci 378(1–2):503–511

    Article  Google Scholar 

  • Detduangchan N, Sridach W, Wittaya T (2014) Enhancement of properties of biodegradable rice starch films by using chemical crosslinking agents. Int Food Res J 21(3):1225–1235

    CAS  Google Scholar 

  • Ding J et al (2012) Enhancing the permselectivity of pervaporation membranes by constructing the active layer through alternative self-assembly and spin coating. J Membr Sci 390–391:218–225

    Article  Google Scholar 

  • Ebewele R (2000) Polymer science and technology. CRC Press LLC, New York

    Book  Google Scholar 

  • Felix J, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci 42(3):609–620

    Article  CAS  Google Scholar 

  • Felix M, Romero A, Martin-Alfonso J, Guerrero A (2015) Development of crayfish protein-PCL biocomposite material processed by injection moulding. Compos Part B: Eng in press

    Google Scholar 

  • Freudenberg K (1932) The relation of cellulose to lignin in wood. J Chem Edu 9(Part II) 1171–1180

    Google Scholar 

  • Garg S, Jana KA., (2007) Studies on the properties and characteristics of starch–LDPE blend films using cross-linked, glycerol modified, cross-linked and glycerol modified starch. Eur. Polymer J. 43(9):3976–3987

    Google Scholar 

  • Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic Press, London

    Google Scholar 

  • Gomes M, Ribeiro A, Malafaya PRR, Cunha A (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphorlogy, mechanical and degradation behaviour. Biomaterials 22(9):883–889

    Article  CAS  Google Scholar 

  • Herrera-Franco P, Agular-Vega M (1997) Effect of fiber treatment on the mechanical properties of LDPE-henequen cellulosic fiber composites. J Appl Polym Sci 65(1):197–207

    Article  CAS  Google Scholar 

  • Herrick F, Casebier R, Hamilton J, Sandberg K (1983) Microfibrillated cellulose morphology and accessibility. Wiley, New york, pp 797–813

    Google Scholar 

  • Hinchiranan N, Wannako P, Paosawatyanyong B, Prasassarakich P (2013) 2,2,2-Trifluoroethyl methacrylate-graft-natural rubber: synthesis and application as compatibilizer in natural rubber fluoroelastomers. Mater Chem Phys 139(2–3):689–698

    Article  CAS  Google Scholar 

  • Hooshmand S, Aitomäki Y, Skrifvars M, Mathew AP & Oksman K (2014) ‘All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals’ Cellulose 21(4):2665–2678, doi:10.1007/s10570-014-0269-4

    Google Scholar 

  • Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr Polym 101:11–19

    Article  CAS  Google Scholar 

  • Ismail H, Nizam J, AbdulKhalil H (2001) The effect of compatibilizer on the mechanical properties and mass swell of rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Testing 20(2):125–133

    Article  CAS  Google Scholar 

  • Jadhav R, Kasture P, Gattani S, Surana S (2010) Formulation and evaluation of transdermal films of diclofenac sodium. Int J ChemTech Res 2(1):354–360

    CAS  Google Scholar 

  • Kaplan D, Tsloris K, Omenetto F, Pritchard E (2013) Silk fibroin-based microneedles and methods of making the same. US, patent no. US2013/0338632 A1

    Google Scholar 

  • Kijawara K, Miyamoto T (2007) Progress in structural characterization of functional polysaccharides. In: Dumitriu S (ed) Polysaccarides: structural diversity and functional versatility. Marcel Dekker, New York, pp 1–40

    Google Scholar 

  • Kim MS, Lee DH, Kim CH, Lee YJ, Hwang JY, Yang CM (2015) Shell–core structured carbon fibers via melt spinning of petroleum-and wood-processing waste blends. Carbon. 85, doi:10.1016/j.carbon.2014.12.100

    Google Scholar 

  • Komuraiah A, Kumar N, Prasad D (2013) Determination of energy changes and length of micro cracks formed in cotton fibre reinforced natural composite laminate due to environmental degradation. APCBEE 120–125

    Google Scholar 

  • Kosmann N et al (2015) Determining the effects of void in GFRP on the damage behaviour under compression loading using acoustic emi. Compos B Eng 70(1):184–188

    Article  CAS  Google Scholar 

  • Kulshreshtha A (2002) An overview of composite fabrication, design and cost. In: Kulshreshtha A, Vasile C (eds) Handbook of polymer blends and composites. UK, RAP-RA Technology LTD, pp 5–52

    Google Scholar 

  • Lauren P et al (2014) Technitium-99 m labelled nanofibrillar cellulose for in vitro drug release. Eur J Pharm Sci 65:79–88

    Article  CAS  Google Scholar 

  • Lee K et al (2014) On the use of nanocellulose as reinforcement in polymer matrix. Compos Sci Technol 105:15–27

    Article  Google Scholar 

  • Lee K-Y, Bharadia P, Blacker JJ, Bismarck A (2012a) Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos A 43:2065–2074

    Article  CAS  Google Scholar 

  • Lee K et al (2012b) High performance cellulose nanocomposite comparing the reinforcing ability os bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4(8):4078–4086

    Article  CAS  Google Scholar 

  • Lee M (1989) Dictionary of composite materials technology. Technomic Publishing Co., Lancaster, PA

    Google Scholar 

  • Leong Y, Karim A, Norziah M (2007) Effect of pullulanase debranching of sago (Metroxylon saga) starch at subgelatinization temperature on the yield of resistant starch. Starch/Starke 59:21–32

    Article  CAS  Google Scholar 

  • Mallas A, Das K (2013) Selective dispersion of different organoclays in styrene butadiene rubber in the presence of a compatibilizer. Mater Des 49:857–865

    Article  Google Scholar 

  • Martin O, Schwach E, Averous L, Couturier Y (2001) Properties of biodegradable multilayer film based on plasticized wheat starch. Starch 53:372–380

    Article  CAS  Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688

    Google Scholar 

  • Mekkawy A, Fathy M, El-Shanawany S (2013) Formulation and in vitro evaluation of fluconazole topical gels. Br J Pharm Res 3(3):293–313

    Article  Google Scholar 

  • Meyer M, Baltzer H, Schwikal K (2010) Collagen Fibres by Thermoplastic and Wet Spinning, Mater. Sci. Eng. C 30:1266–1271

    Google Scholar 

  • Miki T et al (2014) Preparation of wood plastic composite sheets by lateral extrusion of solid woods using their fluidity. Elselvier, Nagoys, pp 580–585

    Google Scholar 

  • Mironenko A et al (2014) Fabrication and optical properties of chitosan/Ag nanoparticles thin film composites. Chem Eng J 244:457–463

    Article  CAS  Google Scholar 

  • Mohanty A, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites. Macromolecular Mater Eng 276(277):1–24

    Article  Google Scholar 

  • Mortazavi S, Ghasemi I, Oromiehie A (2013) Effect of phase inversion on the physical and mechanical properties of low density-polyethylene/thermoplastic starch. Polym Test 32(3):482–491

    Article  CAS  Google Scholar 

  • Nafchi A, Moradpour M, Saeidi M, Alias A (2013) Thermoplastic starches: properties, challenges and prospects. Starch J 65:61–72

    Article  Google Scholar 

  • Naskar N, SC Debnath, and DK Basu (2001) Novel method for preparation of carboxylated nitrile rubber-natural rubber blends using Bis (diisopropyl) thiophosphoryl polysulphides, J. Appl. Polym. Sci. 80:1725–1736

    Google Scholar 

  • Ndlovu S, van Reenen A, Luyt A (2013) LDPE-wood composites utilizing degraded LDPE as compatibilizer. Comp Part A: Appl Sci Manuf 51:80–88

    Article  CAS  Google Scholar 

  • Nishio Y (1994) Hyperfine composites of cellulose with synthetic polymers. In: Gilbert R (ed) Cellulosic polymers, blends and composites. Hanser Publishers, New York, pp 95–113

    Google Scholar 

  • Olatunji O et al (2014) Microneedles from fish scale biopolymer. J Appl Polym Sci 40377:1–10

    Google Scholar 

  • Olatunji O, Olsson R (2015) Microneedles from fish scale-nanocellulose blends using low temperature mechanical press method. Pharmaceutics. 7: 363-378

    Google Scholar 

  • Onyeagaro, M (2013) Reactive Compatibilization of Natural Rubber (NR)/Carboxylated Nitrile Rubber (XNBR) Blends By Maleic Anhydride-Grafted-Polyisoprene (MAPI) And Epoxy Resin Dual Compatibilizers. IRJES. 2(3):7–16

    Google Scholar 

  • Pantamanatsopa P et al (2014) Effect of modified jute fiber on mechanical properties of green rubber composite. Energy Procedia 56:641–647

    Article  CAS  Google Scholar 

  • Polnaya F, Haryadi M, Cahyanto M (2013) Effects of phosphorylation and cross-linking on the pasting properties and molecular structure of sago starch. Int Food Res J 20(4):1609–1615

    Google Scholar 

  • Prachayawarakorn J, Pombage W (2014) Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers. Mater Des 61:264–269

    Article  CAS  Google Scholar 

  • Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforce by cotton fiber or low-density polyethylene. Carbohydr Polym 81(2):425–433

    Article  CAS  Google Scholar 

  • Preston R, Nicolai E (1948) An electron microscope study of cellulose in the wall of Valonia ventricosa. Nature 162(4121):665–667

    Article  CAS  Google Scholar 

  • Putnam D, Lowe E Jr, Meiler J (2014) Reconstruction of SAXS profiles from protein structures. Comput Struct Biotechnol J 8(11):1–12

    Google Scholar 

  • Quiroz-Castillo J et al (2014) Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydr Polym 101:1094–1100

    Article  CAS  Google Scholar 

  • Rajasekar R et al (2009) Development of nitrile butadiene rubber-nanoclay composites with epoxidized natural rubber as compatibilizer. Mater Des 30(9):3839–3845

    Article  CAS  Google Scholar 

  • Rawal A, Mukhopadhyay S (2014) Melt spinning of synthetic polymeric filaments. Adv Filament Yarn Spinning Text Polym 75–99

    Google Scholar 

  • Repka M, Battu S, Upadhye S (2007) Pharmaceutical application of hot melt extrusion part 2. Drug Dev Ind Pharm 33:1043–1057

    Article  CAS  Google Scholar 

  • Roberts J (1959) Nuclear magnetic resonance. McGraw Hill, New York

    Google Scholar 

  • Rojas O, Montero G, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935

    Article  CAS  Google Scholar 

  • Roper H, Koch H (1990) Starch/Stark. 42:123–130

    Article  CAS  Google Scholar 

  • Rozmarin G (1984) Macromolecular fundamentals of wood chemistry. Technical Printing House, Bucuresti

    Google Scholar 

  • Sabetzadeh M, Bagheri R, Masoomi M (2015) Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydr Polym 119:126–133

    Article  CAS  Google Scholar 

  • Salon M et al (2005) Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J Colloid Interface Sci 289(1):249–261

    Article  CAS  Google Scholar 

  • Santos T et al (2014) Fish gelatin films as affected by cellulose whiskers and sonication. Food Hydrocolloids 41:113–118

    Article  CAS  Google Scholar 

  • Santulli C et al (2013) Mechanical behaviour of jute cloth/wool felts hybrid laminates. Mater Des 15:302–321

    Google Scholar 

  • Sarasini F, Santulli C (2014) Non-destructive testing (NDT) of natural fibre composites: acoustic emission technique. Nat Fibre Comp 273–302

    Google Scholar 

  • Sengloyan K, Sahakaro K, Dierkes W, Noordermeer J (2014) Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. Eur Polym J 51:69–79

    Article  Google Scholar 

  • Seymour R, Carraher C (1992) Polymer chemistry: an introduction, 3rd edn. Marcel Dekker Inc., New York

    Google Scholar 

  • Simmons A, Eisenberg A (1986) Miscibility enhancement in ionomeric blends. Polym Prep (ACS Div Polym Chem) 27(1):341

    CAS  Google Scholar 

  • Singh T, McCarron P, Woolfson A, Donnelly R (2009) Physicochemical characterization of poly(ethylene glycol) plasticized poly(methyl vinyl etehr-co-maleic acid) films. J Appl Polym Sci 112:2792–2799

    Article  CAS  Google Scholar 

  • C Sirisinha, C Saeoui, P and Guaysomboon J (2004) Oil and thermal aging resistance in compatibilized and thermally stabilized chlorinated polyethylene/natural rubber blends, Polym 45:4909–4916

    Google Scholar 

  • Su J et al (2014) Superior toughness obtained via tunning the compatibility of polyethyleneterepthalate/polyethylene-octene blends. Mater Des 53:673–680

    Article  Google Scholar 

  • Takase S, Shiraishi N, Takahama M (1989) Studies of composites from wood and polypropylenes. In: Phillips G, PA W (eds) Wood processing and utilization. Ellis Horwood Limited, New York, pp 243–249

    Google Scholar 

  • Takeda H, Yasuoka N, Kasai N (1977) The crystal and molecular structure of a 3: 2 mixture of laminarabiose and O-α-d-glucopyranosyl-(1→ 3)-β-d-glucopyranose. Carbohydr Res 53:137

    Google Scholar 

  • Teaca C, Bodirlau R, Spiridon I (2013) Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydr Polym 93(1):307–315

    Article  CAS  Google Scholar 

  • Teh P et al (2004) Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber-nanoclay nanocomposites. Eur Polym J 40(11):2513–2521

    Article  CAS  Google Scholar 

  • Tran T, Benezat J, Bergeret A (2014) Rice an Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124

    Article  CAS  Google Scholar 

  • Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Syst 37:459–494

    Google Scholar 

  • Van Tuil R et al (2000) Converting biobased polymers into food packaging. Copenhagen, pp 28–30

    Google Scholar 

  • Vervaet C, Verhoeven E, Quinten T, Remon P (2008) Hot melt extrusion and injection moulding as manufacturing tools for controlled release formulation. Dosis 24(2):119–123

    Google Scholar 

  • Wang L, Shogren R, Carriere C (2000) Preparation and properties of thermoplastic starch polyester laminate sheets by coextrusion. Polym Eng Sci 40(2):499–506

    Article  CAS  Google Scholar 

  • Wan Y et al (2008) Fibrous poly(chitosan-g-DL-lactic acid) scaffolds prepared by electro we-spinning. Acta Biomater 4(4):876–886

    Article  CAS  Google Scholar 

  • Xie Y et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Comp: Part A: Appl Sci Manuf 41:806–819

    Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Google Scholar 

  • Yeh MH (1995) Compositions based on cationic polymers and anionic xanthan gum. EP Patent 654482

    Google Scholar 

  • Yokota S, Kitaoka T, Wariishi H (2008) Biofunctionality of self-assembled nanolayers composed of cellulosic polymers. Carbohydr Polym 74(3):666–672

    Article  CAS  Google Scholar 

  • You X, Chang J, Ju B, Pak J (2011) Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mater Sci Eng, C 31:1632–1636

    Article  CAS  Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–607

    Article  CAS  Google Scholar 

  • Zain NFM, Yusop SM, Ahmad I (2014) Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis). Albedo. J Nutr Food Sci 5:334. doi:10.4172/2155-9600.1000334

  • Zema L et al (2012) Injection moulding and it’s application to drug delivery. J Control Release 159(3):324–331

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the international Foundation for Science, Stockholm Sweden through a grant to Ololade Olatunji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olatunji, O., Richard, O. (2016). Processing and Characterization of Natural Polymers. In: Olatunji, O. (eds) Natural Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-26414-1_2

Download citation

Publish with us

Policies and ethics