Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9454))

  • 1291 Accesses

Abstract

This paper presents a novel approach for mobile phone centric observation applied to indoor localization. The approach involves a localization fingerprinting methodology that takes advantage of the presence of magnetic field anomalies inside buildings, and uses all three components of the measured magnetic field vectors to improve accuracy. By using adequate soft computing techniques, it is possible to adequately balance the constraints of common solutions. The resulting system does not rely on any infrastructure devices and therefore is easy to manage and deploy. Experimental evaluations carried out in two different buildings confirm the satisfactory performance of indoor localization based on magnetic field vectors. These evaluations provided an error of (11.34 m, 4.78 m) in the (xy) components of the estimated positions in the first building where experiments were carried out, with a standard deviation of (3.41 m, 4.68 m); and, in the second building, an error of (4 m, 2.98 m) with a deviation of (2.64 m, 2.33 m).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misra, P., Enge, P.: Special issue on global positioning system. Proc. IEEE 87, 3–15 (1999)

    Article  Google Scholar 

  2. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010)

    Article  Google Scholar 

  3. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34, 57–66 (2001)

    Article  Google Scholar 

  4. Gozick, B., Subbu, K.P., Dantu, R., Maeshiro, T.: Magnetic maps for indoor navigation. IEEE Trans. Instrum. Measur. 60, 3883–3891 (2011)

    Article  Google Scholar 

  5. Li, B., Gallagher, T., Dempster, A.G., Rizos, C.: How feasible is the use of magnetic field alone for indoor positioning? In: 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9. IEEE (2012)

    Google Scholar 

  6. Angermann, M., Frassl, M., Doniec, M., Julian, B.J., Robertson, P.: Characterization of the indoor magnetic field for applications in localization and mapping. In: 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9. IEEE (2012)

    Google Scholar 

  7. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013)

    Book  MATH  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  9. Fraley, C., Raftery, A.E.: Bayesian regularization for normal mixture estimation and model-based clustering. J. Classif. 24, 155–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Witten, D.M., Tibshirani, R.: A framework for feature selection in clustering. J. Am. Stat. Assoc. 105, 713–726 (2010)

    Article  MathSciNet  Google Scholar 

  11. Williams, C.K., Barber, D.: Bayesian classification with gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1342–1351 (1998)

    Article  Google Scholar 

  12. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  13. Branden, K.V., Hubert, M.: Robust classification in high dimensions based on the simca method. Chemom. Intell. Lab. Syst. 79, 10–21 (2005)

    Article  Google Scholar 

  14. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the rprop algorithm. In: IEEE International Conference on Neural Networks, pp. 586–591. IEEE (1993)

    Google Scholar 

  15. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Foresee, F.D., Hagan, M.T.: Gauss-newton approximation to bayesian learning. In: Proceedings of the 1997 International Joint Conference on Neural Networks, vol. 3, pp. 1930–1935. IEEE, Piscataway (1997)

    Google Scholar 

  17. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  18. Hoseinitabatabaei, S.A., Gluhak, A., Tafazolli, R.: udirect: A novel approach for pervasive observation of user direction with mobile phones. In: 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 74–83. IEEE (2011)

    Google Scholar 

Download references

Acknowledgments

This work has been sponsored by European Commission through the FP7-SOCIOTAL-609112 EU Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Carrillo, D., Moreno, V., Skarmeta, A.F. (2015). MagicFinger: A New Approach to Indoor Localization. In: García-Chamizo, J., Fortino, G., Ochoa, S. (eds) Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information. UCAmI 2015. Lecture Notes in Computer Science(), vol 9454. Springer, Cham. https://doi.org/10.1007/978-3-319-26401-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26401-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26400-4

  • Online ISBN: 978-3-319-26401-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics