Skip to main content

AME in LDN 1780

  • Chapter
  • First Online:
Diffuse Radio Foregrounds

Part of the book series: Springer Theses ((Springer Theses))

  • 347 Accesses

Abstract

In this chapter we study the AME in the Lynds Dark Nebula (LDN) 1780 . Here, we have detected AME using interferometric observations at 31 GHz with 6\(^\prime \) angular resolution (Vidal et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The extinction at a particular wavelength, in this case at the location of the H\(\alpha \) line at 656.3 nm, can be estimated from the extinction in the V band using the extinction curve. The extinction at the V band A(V) is related with the reddening \(E(B-V)\) through: \(A(V)/E(B-V)=R(V)\), with R(V) having a typical value of 3.1 in the Milky way.

  2. 2.

    http://lambda.gsfc.nasa.gov/.

  3. 3.

    http://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive.

References

  • Ali-Haïmoud, Y., Hirata, C. M., & Dickinson, C. (2009). A refined model for spinning dust radiation. MNRAS, 395, 1055–1078.

    Article  ADS  Google Scholar 

  • Bennett, C. L., et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. ApJS, 208(20), 20.

    Article  ADS  Google Scholar 

  • Boulanger, F., & Perault, M. (1988). Diffuse infrared emission from the galaxy. I - Solar neighborhood. ApJ, 330, 964–985.

    Google Scholar 

  • Cardelli, J. A., Clayton, G. C., & Mathis, J. S. (1989). The relationship between infrared, optical, and ultraviolet extinction. ApJ, 345, 245–256.

    Article  ADS  Google Scholar 

  • Condon, J. J., et al. (1998). The NRAO VLA Sky Survey. AJ, 115, 1693–1716.

    Google Scholar 

  • Cornwell, T. J., & Evans, K. F. (1985). A simple maximum entropy deconvolution algorithm. A & A, 143, 77–83.

    Google Scholar 

  • Davies, R. D., et al. (2006). A determination of the spectra of Galactic components observed by theWilkinsonMicrowave Anisotropy Probe. MNRAS, 370, 1125–1139.

    Article  ADS  Google Scholar 

  • del Burgo, C., & Cambrésy, L. (2006). Properties of dust and detection of H\(\alpha \) emission in LDN 1780. MNRAS, 368, 1463–1478.

    Article  ADS  Google Scholar 

  • Dickinson, C., Davies, R. D., & Davis, R. J. (2003). Towards a free-free template for CMB foregrounds. MNRAS, 341, 369–384.

    Article  ADS  Google Scholar 

  • Draine, B. T., & Lazarian, A. (1998). Electric dipole radiation from spinning dust grains. ApJ, 508, 157–179.

    Article  ADS  Google Scholar 

  • Draine, B. T., & Li, A. (2007). Infrared emission from interstellar dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era. ApJ, 657, 810–837.

    Article  ADS  Google Scholar 

  • Finkbeiner, D. P. (2003). A Full-Sky Ha template for microwave foreground prediction. ApJS, 146, 407–415.

    Article  ADS  Google Scholar 

  • Fixsen, D. J. (2009). The temperature of the cosmic microwave background. ApJ, 707, 916–920.

    Article  ADS  Google Scholar 

  • Franco, G. A. P. (1989). High latitude molecular clouds—distances derived from accurate photometry. A & A, 223, 313–320.

    Google Scholar 

  • Haslam, C. G. T. et al. (1982). A 408 MHz all-sky continuum survey. II—the atlas of contour maps. A & AS, 47, 1.

    Google Scholar 

  • Hauser, M. G., et al. (1998). The COBE diffuse infrared background experiment search for the cosmic infrared background. I. Limits and Detections. ApJ, 508, 25–43.

    Google Scholar 

  • Högbom, J. A. (1974). Aperture synthesis with a non-regular distribution of interferometer baselines. A & AS, 15, 417.

    Google Scholar 

  • Jonas, J. L., Baart, E. E., & Nicolson, G. D. (1998). The Rhodes/HartRAO 2326-MHz radio continuum survey. MNRAS, 297, 977–989.

    Article  ADS  Google Scholar 

  • Laureijs, R. J. et al. (1995). Moderate-Density regions in the LYNDS 134 cloud complex. ApJS, 101, 87.

    Google Scholar 

  • Leitch, E. M. et al. (1997). An anomalous component of galactic emission. ApJ, 486, L23+.

    Google Scholar 

  • Lynds, B. T. (1962). Catalogue of Dark Nebulae. ApJS, 7, 1.

    Google Scholar 

  • Markwardt, C. B. (2009). Non-linear least-squares fitting in IDL with MPFIT. In D. A. Bohlender, D. Durand & P. Dowler (Eds.), Astronomical data analysis software and systems XVIII, Vol. 411. Astronomical Society of the Pacific Conference Series, p. 251.

    Google Scholar 

  • Mathis, J. S., Mezger, P. G., & Panagia, N. (1983). Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. A & A, 128, 212–229.

    Google Scholar 

  • Mattila, K., Juvela, M., & Lehtinen, K. (2007). Galactic dust clouds are shining in Scattered Ha Light. ApJ, 654, L131–L134.

    Article  ADS  Google Scholar 

  • Mattila, K., & Sandell, G. (1979). Observations of neutral hydrogen and OH in the dark nebula LYNDS 1778/1780. A & A, 78, 264–274.

    Google Scholar 

  • Padin, S., et al. (2002). The cosmic background imager. PASP, 114, 83–97.

    Article  ADS  Google Scholar 

  • Planck Collaboration et al. (2011). Planck early results. XXV. Thermal dust in nearby molecular clouds. A & A, 536, A25.

    Google Scholar 

  • Planck Collaboration et al. (2013a). Planck 2013 results. I. Overview of products and scientific results. ArXiv e-prints.

    Google Scholar 

  • Planck Collaboration et al. (2013b). Planck 2013 results. XII. Component separation. ArXiv e-prints.

    Google Scholar 

  • Planck Collaboration et al. (2013c). Planck 2013 results. XIII. Galactic CO emission. ArXiv e-prints.

    Google Scholar 

  • Planck Collaboration et al. (2013d). Planck 2013 results. XXXI. All-sky model of thermal dust emission. ArXiv e-prints.

    Google Scholar 

  • Planck Collaboration et al. (2013e). Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. ArXiv e-prints.

    Google Scholar 

  • Reich, P., & Reich, W. (1986). A radio continuum survey of the northern sky at 1420 MHz. II. A & AS, 63, 205–288.

    Google Scholar 

  • Reich, P., Testori, J. C., & W. Reich. (2001). A radio continuumsurvey of the southern sky at 1420 MHz. The atlas of contour maps. A & A, 376, 861–877.

    Google Scholar 

  • Reich, W. (1982). A radio continuum survey of the northern sky at 1420 MHz. I. A & AS, 48, 219–297.

    Google Scholar 

  • Ridderstad, M., et al. (2006). Properties of dust in the high-latitude translucent cloud L1780. I. Spatially distinct dust populations and increased dust emissivity from ISO observations. A & A, 451, 961–971.

    Google Scholar 

  • Sault, R. J., Teuben, P. J. & Wright, M. C. H. (1995). A retrospective view of MIRIAD. In R. A. Shaw, H. E. Payne & J. J. E. Hayes (Eds.), Astronomical Data Analysis Software and Systems IV, Vol. 77. Astronomical Society of the Pacific Conference Series, p. 433.

    Google Scholar 

  • Schlegel, D. J., Finkbeiner, D. P., Davis, M. (1998). Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. ApJ, 500, 525–+.

    Google Scholar 

  • Silsbee, K., Ali-Haömoud, Y., & Hirata, C. M. (2011). Spinning dust emission: the effect of rotation around a non-principal axis. MNRAS, 411, 2750–2769.

    Article  ADS  Google Scholar 

  • Snow, T. P., & McCall, B. J. (2006). Diffuse automic and molecular clouds. ARA & A, 44, 367–414.

    Google Scholar 

  • Taylor, A. C., et al. (2011). The cosmic background imager 2. MNRAS, 418, 2720–2729.

    Article  ADS  Google Scholar 

  • Toth, L. V. et al. (1995). L 1780: a cometary globule associated with Loop I? A & A, 295, 755.

    Google Scholar 

  • Vidal, M., et al. (2011). Dust-correlated cm wavelength continuum emission from translucent clouds \(\zeta \) Oph and LDN 1780. MNRAS, 414, 2424–2435.

    Article  ADS  Google Scholar 

  • Weingartner, J. C., & Draine, B. T. (2001). Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. ApJ, 548, 296–309.

    Article  ADS  Google Scholar 

  • Witt, A. N. et al. (2010). On the origins of the high-latitude ha background. ApJ, 724, 1551–1560.

    Google Scholar 

  • Ysard, N., Miville-Deschênes, M. A., & Verstraete, L. (2010). Probing the origin of the microwave anomalous foreground. A & A, 509(L1), L1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Vidal Navarro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vidal Navarro, M. (2016). AME in LDN 1780. In: Diffuse Radio Foregrounds. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26263-5_5

Download citation

Publish with us

Policies and ethics