Skip to main content

Comparing Methods for Decoding Movement Trajectory from ECoG in Chronic Stroke Patients

  • Chapter
  • First Online:
Advances in Neurotechnology, Electronics and Informatics

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 12))

Abstract

Decoding the neural activity based on ECoG signals is widely used in the field of Brain-Computer Interfaces (BCIs) to predict movement trajectories or control a prosthetic device. However, there are only few reports of using ECoG in stroke patients. In this paper, we compare different methods for predicting contralateral movement trajectories from epidural ECoG signals recorded over the lesioned hemisphere in three chronic stroke patients. The results show that movement trajectories can be predicted with correlation coefficients ranging from 0.24 to 0.64. Depending on the intended application, either the use of Support Vector Regression (SVR) or Canonical Correlation Analysis (CCA) obtained the best results. By investigating how ECoG based decoding performs in comparison with EMG based decoding it becomes visible that abnormal muscle activation patterns affect the prediction and that using activity of only the forearm muscles, there is no significant difference between ECoG and EMG for predicting wrist movement trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cramer, S., Nelles, G., Benson, R., Kaplan, J., Parker, R., Kwong, K., Kennedy, D., Finklestein, S., Rosen, B.: A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28, 2518–2527 (1997)

    Article  Google Scholar 

  2. Kwakkel, G., Kollen, B.J., van der Ground, J., Prevo, A.J.: Probability of regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke. Stroke 34, 2181–2186 (2003)

    Article  Google Scholar 

  3. Yanagisawa, T., Hirata, M., Saitoh, Y., Goto, T., Kishima, H., Fukuma, R., Yokoi, H., Kamitani, Y., Yoshimine, T.: Real-time control of a prosthetic hand using human electrocorticography signals: technical note. J. Neurosurg. 114, 1715–1722 (2011)

    Article  Google Scholar 

  4. Buch, E., Weber, C., Cohen, L., Braun, C., Dimyan, M., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)

    Article  Google Scholar 

  5. Broetz, D., Braun, C., Weber, C., Soekadar, S., Caria, A., Birbaumer, N.: Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair 24, 674–679 (2010)

    Article  Google Scholar 

  6. Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F.L., Liberati, G., Curado, M.R., Garcia-Cossio, E., Vyziotis, A., et al.: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013)

    Article  Google Scholar 

  7. Spüler, M., Walter, A., Ramos-Murguialday, A., Naros, G., Birbaumer, N., Gharabaghi, A., Rosenstiel, W., Bogdan, M.: Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. J. Neural Eng. 11, 066008 (2014)

    Article  Google Scholar 

  8. Gharabaghi, A., Kraus, D., Leao, M.T., Spüler, M., Walter, A., Bogdan, M., Rosenstiel, W., Naros, G., Ziemann, U.: Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front. Hum. Neurosci. 8 (2014)

    Google Scholar 

  9. Gharabaghi, A., Naros, G., Khademi, F., Jesser, J., Spüler, M., Walter, A., Bogdan, M., Rosenstiel, W., Birbaumer, N.: Learned self-regulation of the lesioned brain with epidural electrocorticography. Front. Behav. Neurosci. 8 (2014)

    Google Scholar 

  10. Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A., Piccione, F., Birbaumer, N.: Brain-computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42, 245–252 (2011)

    Article  Google Scholar 

  11. Cirstea, M., Levin, M.F.: Compensatory strategies for reaching in stroke. Brain 123, 940–953 (2000)

    Article  Google Scholar 

  12. Lee, M.Y., Park, J.W., Park, R.J., Hong, J.H., Son, S.M., Ahn, S.H., Cho, Y.W., Jang, S.H.: Cortical activation pattern of compensatory movement in stroke patients. NeuroRehabilitation 25, 255–260 (2009)

    Google Scholar 

  13. Bin, G., Gao, X., Yan, Z., Hong, B., Gao, S.: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J. Neural Eng. 6, 046002 (2009)

    Article  Google Scholar 

  14. Spüler, M., Rosenstiel, W., Bogdan, M.: Online adaptation of a c-VEP Brain-Computer Interface (BCI) based on Error-related potentials and unsupervised learning. PLoS ONE 7, e51077 (2012)

    Article  Google Scholar 

  15. Spüler, M., Walter, A., Rosenstiel, W., Bogdan, M.: Spatial filtering based on canonical correlation analysis for classification of evoked or event-related potentials in EEG data. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 1097–1103 (2014)

    Article  Google Scholar 

  16. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    Article  MATH  Google Scholar 

  17. Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. Ann. Stat. 73–102 (1995)

    Google Scholar 

  18. Bishop, C.M., et al.: Pattern recognition and machine learning, vol. 1. Springer, New York (2006)

    Google Scholar 

  19. Sun, L., Ji, S., Ye, J.: A least squares formulation for canonical correlation analysis. In: Proceedings of the 25th International Conference on Machine Learning. ACM, pp. 1024–1031 (2008)

    Google Scholar 

  20. Walter, A., Murguialday, A.R., Spüler, M., Naros, G., Leão, M.T., Gharabaghi, A., Rosenstiel, W., Birbaumer, N., Bogdan, M.: Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects. Front. Neural Circuits 6 (2012)

    Google Scholar 

  21. Fugl-Meyer, A., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975)

    Google Scholar 

  22. Burg, J.P.: Maximum entropy spectral analysis. In: 37th Annual International Meeting., Society of Exploration Geophysics (1967)

    Google Scholar 

  23. Spüler, M., Rosenstiel, W., Bogdan, M.: A fast feature selection method for high-dimensional MEG BCI data. In: Proceedings of the 5th International Brain-Computer Interface Conference, pp. 24–27. Graz (2011)

    Google Scholar 

  24. Phinyomark, A., Chujit, G., Phukpattaranont, P., Limsakul, C., Hu, H.: A preliminary study assessing time-domain EMG features of classifying exercises in preventing falls in the elderly. In: 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–4 (2012)

    Google Scholar 

  25. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 27 (2011)

    Google Scholar 

  26. Dunteman, G.H.: Principal components analysis. No. 69. Sage, Newbury Park (1989)

    Google Scholar 

  27. Sheikh, H., McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R.: Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans. Neurosci. Lett. 345, 89–92 (2003)

    Article  Google Scholar 

  28. Schalk, G., Kubanek, J., Miller, K., Anderson, N., Leuthardt, E., Ojemann, J., Limbrick, D., Moran, D., Gerhardt, L., Wolpaw, J.: Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4, 264 (2007)

    Article  Google Scholar 

  29. Waldert, S., Pistohl, T., Braun, C., Ball, T., Aertsen, A., Mehring, C.: A review on directional information in neural signals for brain-ymachine interfaces. J. Physiol. Paris 103, 244–254 (2009)

    Article  Google Scholar 

  30. Schalk, G., Miller, K., Anderson, N., Wilson, J., Smyth, M., Ojemann, J., Moran, D., Wolpaw, J., Leuthardt, E.: Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75–84 (2008)

    Article  Google Scholar 

  31. Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C.: Prediction of arm movement trajectories from ECoG-recordings in humans. J. Neurosci. Methods 167, 105–114 (2008)

    Article  Google Scholar 

  32. Nakanishi, Y., Yanagisawa, T., Shin, D., Fukuma, R., Chen, C., Kambara, H., Yoshimura, N., Hirata, M., Yoshimine, T., Koike, Y.: Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. PLoS ONE 8, e72085 (2013)

    Article  Google Scholar 

  33. Wright, Z.A., Rymer, W.Z., Slutzky, M.W.: Reducing abnormal muscle coactivation after stroke using a myoelectric-computer interface a pilot study. Neurorehabil. Neural Repair 28, 443–451 (2014)

    Article  Google Scholar 

  34. Spüler, M., Rosenstiel, W., Bogdan, M.: Predicting wrist movement trajectory from ipsilesional ECoG in chronic stroke patients. In: Proceedings of 2nd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX), pp. 38–45 (2014)

    Google Scholar 

Download references

Acknowledgments

This manuscript is an extended version of a paper presented at the 2nd International Congress on Neurotechnology, Electronics and Informatics [34]. The work was supported by the European Research Council (ERC 227632-BCCI) and the Baden-Württemberg Stiftung (GRUENS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Spüler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spüler, M., Grimm, F., Gharabaghi, A., Bogdan, M., Rosenstiel, W. (2016). Comparing Methods for Decoding Movement Trajectory from ECoG in Chronic Stroke Patients. In: Londral, A., Encarnação, P. (eds) Advances in Neurotechnology, Electronics and Informatics. Biosystems & Biorobotics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-26242-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26242-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26240-6

  • Online ISBN: 978-3-319-26242-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics