Skip to main content

Permanent Magnets: History, Current Research, and Outlook

  • Chapter
  • First Online:
Novel Functional Magnetic Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 231))

Abstract

Recent developments in permanent magnetism are summarized, considering both intrinsic and extrinsic properties. After a general introduction to permanent magnetism, several classes of materials are discussed in the light of future improvements. Emphasis is on magnets rich in Fe, Co, and Mn. The search for new magnetic compounds with improved magnetization, Curie temperature, and anisotropy is accompanied by the need to realize a microstructure that ensures high coercivity. This need refers to both bulk magnets, where hcp Co and tetragonal FeNi are briefly discussed as negative and positive examples, respectively, and to aligned hard–soft nanocomposites. A very recent concept is imaginary magnetic hardness, which reflects easy-plane magnetism and may be exploited in some ferromagnetic compounds. In aligned two-phase nanostructures, soft-in-hard geometries are better than hard-in-soft geometries, and different shapes behave different in the first and second quadrants of the hysteresis loops. Both intrinsically and extrinsically, the most important task is to maximize the hard phase anisotropy while maintaining a high magnetization. Anisotropy field and magnetic hardness can be maximized by choosing a small magnetization, but this strategy is detrimental to the energy product. The last section deals with the behavior of permanent magnets above room temperature, with emphasis on nanoscale effects. Throughout the chapter, current research trends are critically evaluated, and several common misconceptions are dispelled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bozorth, R.M.: Ferromagnetism. van Nostrand, Princeton (1951)

    Google Scholar 

  2. Chikazumi, S.: Physics of Magnetism. Wiley, New York (1964)

    Google Scholar 

  3. Skomski, R., Coey, J.M.D.: Permanent Magnetism. Institute of Physics, Bristol (1999)

    Google Scholar 

  4. Consider ∇ . (A × H) = B . H, which follows from B = ∇ × A and H = - ∇ϕm. Since ∫ ∇ . (A × H) dV = ∫ (A × H) dS and the respective A and H fields decay as 1/r2 and 1/r3 in infinity, the surface integral and therefore ∫ B . H dV are equal to zero

    Google Scholar 

  5. Yensen, T.D.: Development of magnetic material. Elec. J. 18, 93–95 (1921)

    Google Scholar 

  6. Skomski, R., Sharma, V., Balamurugan, B., Shield, J.E., Kashyap, A., Sellmyer, D.J.: Anisotropy of doped transition-metal magnets. In: Kobe, S., McGuinness, P. (eds.) Proc. REPM'10, pp. 55–60. Jozef Stefan Institute, Ljubljana (2010)

    Google Scholar 

  7. Jellinghaus, W.: New alloys with high coercive force. Z. Tech. Physik 17, 33–36 (1936)

    Google Scholar 

  8. Jin, S., Chin, G.Y.: Fe-Cr-Co magnets. IEEE Trans. Magn. 23, 3187–3192 (1987)

    Article  ADS  Google Scholar 

  9. Evetts, J.E. (ed.): Concise Encyclopedia of Magnetic and Superconducting Materials. Pergamon, Oxford (1992)

    Google Scholar 

  10. Klemmer, T., Hoydick, D., Okumura, H., Zhang, B., Soffa, W.A.: Magnetic hardening and coercivity in L10 ordered fepd ferromagnets. Scr. Met. Mater. 33, l793–1805 (1995)

    Article  Google Scholar 

  11. Kooy, C., Enz, U.: Experimental and theoretical study of the domain configuration in thin layers of BaFe12O19. Philips Res. Rep. 15, 7–29 (1960)

    Google Scholar 

  12. Strnat, K., Hoffer, G., Olson, J., Ostertag, W., Becker, J.J.: A family of new cobalt‐base permanent magnet materials. J. Appl. Phys. 38, 1001–1002 (1967)

    Article  ADS  Google Scholar 

  13. Kumar, K.: RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63, R13–57 (1988)

    Article  ADS  Google Scholar 

  14. Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y.: Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 20, 1584–1589 (1984)

    Article  ADS  Google Scholar 

  15. Sagawa, M., Hirosawa, S., Yamamoto, H., Fujimura, S., Matsuura, Y.: Nd-Fe-B permanent magnet materials. Jpn. J. Appl. Phys. 26, 785–800 (1987)

    Article  ADS  Google Scholar 

  16. Herbst, J.F.: R2Fe14B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819–898 (1991)

    Article  ADS  Google Scholar 

  17. Coey, J.M.D., Sun, H.: Improved magnetic properties by treatment iron-based rare-earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87, L251–L254 (1990)

    Article  ADS  Google Scholar 

  18. Moriya, H., Tsuchiura, H., Sakuma, A.: First-principles calculation of crystal field parameter near surfaces of Nd2Fe14B. J Appl Phys 105, 07A740-1-3 (2009)

    Google Scholar 

  19. Sugimoto, S.: An overview of the Dy-saving project in Japan. In: Kobe, S., McGuinness, P. (eds.) Proc. REPM'10, pp. 103–105. Jozef Stefan Institute, Ljubljana (2010)

    Google Scholar 

  20. Sugimoto, S.: Current status and recent topics of rare-earth permanent magnets. J. Phys. D: Appl. Phys. 44, 064001–1-11 (2011)

    Google Scholar 

  21. Skomski, R., Kashyap, A., Enders, A.: Is the magnetic anisotropy proportional to the orbital moment?. J. Appl. Phys. 109, 07E143-1-3 (2011)

    Google Scholar 

  22. Tanaka, S., Moriya, H., Tsuchiura, H., Sakuma, A., Diviš, M., Novák, P.: First principles study on the local magnetic anisotropy near surfaces of Dy2Fe14B and Nd2Fe14B magnets. J. Appl. Phys. 109, 07A702-1-3 (2011)

    Google Scholar 

  23. Nakamura, T., Yasui, A., Kotani, Y., Fukagawa, T., Nishiuchi, T., Iwai, H., Akiya, T., Ohkubo, T., Gohda,Y., Hono, K., Hirosawa, S.: Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism. Appl. Phys. Lett. 105, 202404–1-4 (2014)

    Google Scholar 

  24. Brown, D. N., Wu, Z., He, F., Miller, D. J., Herchenroeder, J.W.: Dysprosium-free melt-spun permanent magnets. J. Phys. Condens. Matter. 26, 064202–1-8 (2014)

    Google Scholar 

  25. Coey, J.M.D.: Hard magnetic materials: Aperspective. IEEE Trans. Magn. 49, 4671–4681 (2011)

    Article  ADS  Google Scholar 

  26. Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)

    Article  Google Scholar 

  27. Skomski, R., Manchanda, P., Kumar, P., Balamurugan, B., Kashyap, A., Sellmyer, D.J.: Predicting the future of permanent-magnet materials (invited). IEEE Trans. Magn. 49, 3215–3220 (2013)

    Article  ADS  Google Scholar 

  28. McCallum, R.W., Lewis, L.H., Skomski, R., Kramer, M.J., Anderson, I.E.: Practical aspects of modern and future permanent magnets. Ann. Rev. Mater. Res. 44, 451–477 (2014)

    Article  ADS  Google Scholar 

  29. Namai, A., Yoshikiyo, M., Yamada, K., Sakurai, Sh., Goto, T., Yoshida, T., Miyazaki, T., Nakajima, M., Suemoto, T., Tokoro, H., Ohkoshi, Sh.-I.: Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nature Comm. 3, 1035–1-6 (2012).

    Google Scholar 

  30. Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588–3600 (1991)

    Article  ADS  Google Scholar 

  31. Skomski, R.: Nucleation in Inhomogeneous permanent magnets. Phys. Stat. Sol. B 174, K77–80 (1992)

    Google Scholar 

  32. Skomski, R., Coey, J.M.D.: Giant energy product in nanostructured two-phase magnets. Phys. Rev. B 48, 15812–15816 (1993)

    Article  ADS  Google Scholar 

  33. Goto, E., Hayashi, N., Miyashita, T., Nakagawa, K.: Magnetization and switching characteristics of composite thin magnetic films. J. Appl. Phys. 36, 2951–2958 (1965)

    Article  ADS  Google Scholar 

  34. Kronmüller, H.: Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Stat. Sol. B. 144, 385–396 (1987)

    Article  ADS  Google Scholar 

  35. Nieber, S., Kronmüller, H.: Nucleation fields in periodic multilayers. Phys. Stat. Sol. B. 153, 367–375 (1989)

    Article  ADS  Google Scholar 

  36. Jones, N.: The pull of stronger magnets. Nature 472, 22–23 (2011)

    Article  ADS  Google Scholar 

  37. Fullerton, E.E., Jiang, S.J., Bader, S.D.: Hard/soft heterostructures: Model exchange-spring magnets. J. Magn. Magn. Mater. 200, 392–404 (1999)

    Article  ADS  Google Scholar 

  38. Jiang, J.S., Pearson, J.E., Liu, Z.Y., Kabius, B., Trasobares, S., Miller, D.J., Bader, S.D., Lee, D.R., Haskel, D., Srajer, G., Liu, J.P.: Improving exchange-spring nanocomposite permanent magnets. Appl. Phys. Lett. 85, 5293–5295 (2004)

    Article  ADS  Google Scholar 

  39. Zhang, J, Takahashi, Y.K., Gopalan, R., Hono K.: Sm(Co, Cu)5/Fe exchange spring multilayer films with high energy product. Appl. Phys. Lett. 86, 122509–1-2 (2005)

    Google Scholar 

  40. Toga, Y., Moriya, H., Tsuchiura, H., Sakuma, A.: First principles study on interfacial electronic structures in exchange-spring magnets. J. Phys. Conf. Ser. 266, 012046–1-5 (2011)

    Google Scholar 

  41. Neu, V., Sawatzki, S., Kopte, M., Mickel, C., Schultz, L.: Fully epitaxial, exchange coupled SmCo/Fe multilayers with energy densities above 400 kJ/m3. IEEE Trans. Magn. 48, 3599–3602 (2012)

    Article  ADS  Google Scholar 

  42. Sahota, P. K., Liu, Y., Skomski, R., Manchanda, P., Zhang, R., Fangohr, H., Franchin, M., Hadjipanayis, G. C., Kashyap, A., Sellmyer D. J.: Ultrahard magnetic nanostructures. J. Appl. Phys. 111, 07E345-1-3 (2012)

    Google Scholar 

  43. Poudyal N., Liu, J. P.: Advances in nanostructured permanent magnets research. J. Phys. D. Appl. Phys. 46, 043001–1-23 (2013)

    Google Scholar 

  44. Jiang, J. S., Bader, S. D: Rational design of the exchange-spring permanent magnet. J. Phys. Condens. Matter. 26, 064214–1-9 (2014)

    Google Scholar 

  45. Liu, P., Luo, C.P., Liu, Y., Sellmyer, D.J.: High energy products in rapidly annealed nanoscale Fe/Pt multilayers. Appl. Phys. Lett. 72, 483–485 (1998)

    Article  ADS  Google Scholar 

  46. Liu, Y., George, T. A., Ralph Skomski., Sellmyer, D. J.: Aligned and exchange-coupled FePt-based films. Appl. Phys. Lett. 99, 172504–1-3 (2011)

    Google Scholar 

  47. Roy, D., Anil Kumar, P. S.: Enhancement of (BH)max in a hard-soft-ferrite nanocomposite using exchange spring mechanism. J. Appl. Phys. 106, 073902–1-4 (2009)

    Google Scholar 

  48. Cui, W.-B., Takahashi, Y.K., Hono, K.: Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv. Mater. 24, 6530–6535 (2012)

    Article  Google Scholar 

  49. Skomski, R.: Aligned two-phase magnets: permanent magnetism of the future? J. Appl. Phys. 76, 7059–7064 (1994)

    Article  ADS  Google Scholar 

  50. Coehoorn, R., de Mooij, D. B., Duchateau, J. P. W. B., Buschow, K. H. J.: Novel permanent magnetic materials made by rapid quenching. J. Physique. 49, C-8, 669–670 (1988)

    Google Scholar 

  51. Schneider, J., Eckert, D., Müller, K.-H., Handstein, A., Mühlbach, H., Sassik, H., Kirchmayr, H.R.: Magnetization processes in Nd4Fe77B19 permanent magnetic materials. Mater. Lett. 9, 201–203 (1990)

    Article  Google Scholar 

  52. Manaf, A., Buckley, R.A., Davies, H.A.: New nanocrystalline high-remanence Nd-Fe-B alloys by rapid solidification. J. Magn. Magn. Mater. 128, 302–306 (1993)

    Article  ADS  Google Scholar 

  53. Skomski, R.: Spin-glass permanent magnets. J. Magn. Magn. Mater. 157–158, 713–714 (1996)

    Article  Google Scholar 

  54. Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)

    Article  ADS  Google Scholar 

  55. Note that the total magnetostatic self-energy, or dipole-dipole energy, –½μo∫ M . H dV = ½μo D M2 V, is the sum of Ea = ½μo D (1 – D) M2 V and Ei = ½μo D2 M2 V

    Google Scholar 

  56. Skomski, R.: Simple Models of Magnetism. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  57. Bloch, F., Gentile, G.: Zur anisotropie der magnetisierung ferromagnetischer einkristalle. Z. Phys. 70, 395–408 (1931)

    Article  ADS  MATH  Google Scholar 

  58. Skomski, R., Kashyap, A., Solanki, A., Enders, A., Sellmyer, D. J.: Magnetic anisotropy in itinerant magnets. J. Appl. Phys. 107, 09A735-1-3 (2010)

    Google Scholar 

  59. Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter. 15, R841–R896 (2003)

    Article  ADS  Google Scholar 

  60. Brown, W.F.: Micromagnetics. Wiley, New York (1963)

    MATH  Google Scholar 

  61. Aharoni, A.: Theoretical search for domain nucleation. Rev. Mod. Phys. 34, 227–238 (1962)

    Article  ADS  Google Scholar 

  62. Givord, D., Rossignol, M.F.: Coercivity. In: Coey, J.M.D. (ed.) Rare-Earth Iron Permanent Magnets, pp. 218–285. University Press, Oxford (1996)

    Google Scholar 

  63. Kronmüller, H., Yang, J. B., Goll, D.: Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds. J. Phys. Condens. Matter. 26, 064210–1-7 (2014)

    Google Scholar 

  64. McCurrie, R.A.: Ferromagnetic materials—structure and properties. Academic, London (1994)

    Google Scholar 

  65. Skomski, R., Liu, Y., Shield, J. E., Hadjipanayis, G. C., Sellmyer, D. J.: Permanent magnetism of dense-packed nanostructures. J. Appl. Phys. 107, 09A739-1-3 (2010)

    Google Scholar 

  66. Zhou, L., Miller, M.K., Lu, P., Ke, L., Skomski, R., Dillon, H., Xing, Q., Palasyuk, A., McCartney, M.R., Smith, D.J., Constantinides, S., McCallum, R.W., Anderson, I.E., Antropov, V., Kramer, M.J.: Architecture and magnetism of alnico. Acta Mater. 74, 224–233 (2014)

    Article  Google Scholar 

  67. Fast, J.D.: Gases in Metals. Macmillan, London (1976)

    Book  Google Scholar 

  68. Burkert, T., Nordström, L., Eriksson, O., Heinonen, O.: Giant magnetic anisotropy in tetragonal FeCo alloys. Phys. Rev. Lett. 93, 027203–1-4 (2004)

    Google Scholar 

  69. Andersson, G., Burkert, T., Warnicke, P., Björck, M., Sanyal, B., Chacon, C., Zlotea, C., Nordström, L., Nordblad, P., Eriksson, O.: Perpendicular magnetocrystalline anisotropy in tetragonally distorted Fe-Co alloys. Phys. Rev. Lett. 96, 037205–1-4 (2006)

    Google Scholar 

  70. Jack, K.W.: The iron—nitrogen system: The crystal structures of ε-phase iron nitrides. Acta Crystallogr. 5, 404–411 (1952)

    Article  Google Scholar 

  71. Coey, J.M.D., O’Donnell, K., Qinian, Q., Touchais, E., Jack, K.H.: The magnetization of α “Fe16N2”. J. Phys. Condens. Matter. 6, L23–L28 (1994)

    Article  ADS  Google Scholar 

  72. Kim, T.K., Takahashi, M.: New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 20, 492–494 (1972)

    Article  ADS  Google Scholar 

  73. Takahashi, H., Igarashi, M., Kaneko, A., Miyajima, H., Sugita, Y.: Perpendicular uniaxial magnetic anisotropy of Fe16N2(001) single crystal films grown by molecular beam epitaxy. IEEE Trans. Magn. 35, 2982–2984 (1999)

    Article  ADS  Google Scholar 

  74. Al-Omari, I.A., Skomski, R., Thomas, R.A., Leslie-Pelecky, D., Sellmyer, D.J.: High-temperature magnetic properties of mechanically alloyed SmCo5 and YCo5 magnets. IEEE Trans. Magn. 37, 2534–2536 (2001)

    Article  ADS  Google Scholar 

  75. Buschow, K.H.J.: Differences in magnetic properties between amorphous and crystalline alloys. J. Appl. Phys. 53, 7713–7716 (1982)

    Article  ADS  Google Scholar 

  76. Buschow, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123–1213 (1991)

    Article  ADS  Google Scholar 

  77. Demczyk, B.G., Cheng, S.F.: Structures of Zr2Co11 and HfCo7 intermetallic compounds. J. Appl. Crystallogr. 24, 1023–1026 (1991)

    Article  Google Scholar 

  78. Ivanova, G.V., Shchegoleva, N.N., Gabay, A.M.: Crystal structure of Zr2Co11 hard magnetic compound. J. Alloys Comp. 432, 135–141 (2007)

    Google Scholar 

  79. Das, B., Balamurugan, B., Kumar, P., Skomski, R., Shah, V.T., Shield, J.E., Kashyap, A., Sellmyer, D.J.: HfCo7-based rare-earth-free permanent-magnet alloys. IEEE Trans. Magn. 49, 3330–3333 (2013)

    Article  ADS  Google Scholar 

  80. Zhao, X., Nguyen, M. C., Zhang, W. Y., Wang, C. Z., Kramer, M. J., Sellmyer, D. J., Li, X. Z., Zhang, F., Ke, L. Q., Antropov, V. P., Ho, K. M.: Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm. Phys. Rev. Lett. 112, 045502–1-5 (2014)

    Google Scholar 

  81. Zhao, X., Ke, L. Q., Nguyen, M. C., Wang, C.-Zh., Ho, K.-M.: Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations. J. Appl. Phys. 117, 243902–1-6 (2015)

    Google Scholar 

  82. Kumar, P., Kashyap, A., Balamurugan, B., Shield, J. E., Sellmyer, D. J., Skomski, R.: Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements. J. Phys. Condens. Matter. 26, 064209–1-8 (2014)

    Google Scholar 

  83. Das, B., Balamurugan, B., Zhang, W. Y., Skomski, R., Krage, E. S., Valloppilly, S. R., Shield, J. E., Sellmyer, D. J.: Magnetism of less common cobalt-rich alloys. Proc. REPM’12, Nagasaki, pp. 427–430 (2012)

    Google Scholar 

  84. Balamurugan, B., Das, B., Shah, V. R., Skomski, R., Li, X. Z., Sellmyer, D. J.: Assembly of uniaxially aligned rare-earth-free nanomagnets. Appl. Phys. Lett. 101, 122407–1-5 (2012)

    Google Scholar 

  85. Balamurugan, B., Das, B., Skomski, R., Zhang, W.-Y., Sellmyer, D.J.: Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv. Mater. 25, 6090–6093 (2013)

    Article  Google Scholar 

  86. Balamurugan, B., Mukherjee, P., Skomski, R., Manchanda, P., Das, B., Sellmyer, D. J.: Magnetic nanostructuring and overcoming Brown’s paradox to realize extraordinary high-temperature energy products. Sci. Rep. 4, 6265–1-6 (2014)

    Google Scholar 

  87. Balamurugan, B., Das, B., Zhang, W. -Y., Skomski, R., Sellmyer, D. J.: Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets. J. Phys. Condens. Matter 26, 064204–1-8 (2014)

    Google Scholar 

  88. Golkar, F., Kramer, M. J., Zhang, Y., McCallum, R. W., Skomski, R., Sellmyer, D. J., Shield, J. E.: Structure and magnetic properties of Co-W clusters produced by inert gas condensation. J. Appl. Phys. 111, 07B524-1-3 (2012)

    Google Scholar 

  89. Zhang, W.-Y., Li, X.Z., Valloppilly, S., Skomski, R., Sellmyer, D.J.: Effect of annealing on nanostructure and magnetic properties of Zr2Co11 material. Mater. Sci. Eng. B186, 64–67 (2014)

    Article  Google Scholar 

  90. Zhang W. -Y., et al.: in preparation (2015)

    Google Scholar 

  91. Sellmyer, D. J., Balamurugan, B., Das, B., Mukherjee, P., Skomski, R., Hadjipanayis, G. C.: Novel structures and physics of nanomagnets (invited). J. Appl. Phys. 117, 172609–1-6 (2015)

    Google Scholar 

  92. Balasubramanian, B., Skomski, R., Li, X.-Z., Valloppilly, S.R., Shield, J.E., Hadjipanayis, G.C., Sellmyer, D.J.: Cluster synthesis and direct ordering of rare-earth transition-metal nanomagnets. Nano Lett. 11, 1747–1752 (2011)

    Article  ADS  Google Scholar 

  93. Balamurugan, B., Skomski, R., Li, X. Z., Shah, V. R., Hadjipanayis, G. C., Shield, J. E., Sellmyer, D. J.: Magnetism of cluster-deposited Y-Co nanoparticles. J. Appl. Phys. 109, 07A707-1-3 (2011)

    Google Scholar 

  94. Mukherjee, P., Manchanda, P., Kumar, P., Zhou, L., Kramer, M.J., Kashyap, A., Skomski, R., Sellmyer, D.J., Shield, J.E.: Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles. ACS Nano 8, 8113–8120 (2014)

    Article  Google Scholar 

  95. Harris, V. G., Chen, Y., Yang, A., Yoon, S., Chen, Z., Geiler, A. L., Gao, J., Chinnasam, C. N., Lewis, L. H., Vittoria, C., Carpenter, E. E., Carroll, K. J., Goswami, R., Willard, M. A., Kurihara, L., Gjoka, M., Kalogirou, O.: High coercivity cobalt carbide nanoparticles processed via polyol reaction: a new permanent magnet material. J. Phys. D. Appl. Phys. 43, 165003–1-7 (2010)

    Google Scholar 

  96. Gandha, K., Elkins, K., Poudyal, N., Liu, X., Liu, J. P.: High energy product developed from cobalt nanowires. Sci. Rep. 4, 5345–1-5 (2014)

    Google Scholar 

  97. Skomski, R.: Phase formation in L10 magnets. J. Appl. Phys. 101, 09N517-1-3 (2007)

    Google Scholar 

  98. McHenry, M.E., Ramalingum, B., Willoughby, S., MacLaren, J., Sankar, S.G.: First principles calculations of the electronic structure of Fe1-xCoxPt. IEEE Trans. Magn. 37, 1277–1279 (2001)

    Article  ADS  Google Scholar 

  99. Manchanda, P., Skomski, R., Shield, J. E., Constantinides, S., Kashyap, A.: Intrinsic magnetic properties of L10-based Mn-Al and Fe-Co-Pt Alloys. Proc. REPM’12, pp. 115–118 (2012)

    Google Scholar 

  100. Brown, G., Kraczek, B., Janotti, A., Schulthess, T. C., Stocks, G. M., Johnson, D. D.: Competition between ferromagnetism and antiferromagnetism in FePt. Phys. Rev. B. 68, 052405–1-4 (2003)

    Google Scholar 

  101. Skomski, R., Kashyap, A., Zhou, J.: Atomic and micromagnetic aspects of L10 magnetism. Scr. Mater. 53, 391–396 (2005)

    Article  Google Scholar 

  102. Cheng Lai, Y., Chang, Y.H., Chen, G.-J., Chiu, K.-F., Chen, Y.-C.: Abnormal enhancement of ordered phase in sputter-deposited (Fe1-xCox)59Pt41 thin films. Mater. Trans. 47, 2086–2091 (2006)

    Article  Google Scholar 

  103. Choudhary, R., Kumar, P., Manchanda, P., Liu, Y., Kashyap, A., Sellmyer, D. J., Skomski, R.: Atomic magnetic properties of Pt-Lean FePt and CoPt derivatives. Proc. REPM'14, Annapolis, p. 289–291 (2014)

    Google Scholar 

  104. Kono, H.: On the ferromagnetic phase in Mn-Al System. J. Phys. Soc. Jpn. 13, 1444–1451 (1958)

    Article  ADS  Google Scholar 

  105. Jiménez-Villacorta, F., Marion, J. L., Sepehrifar, T., Daniil, M., Willard, M. A., Lewis, L. H.: Exchange anisotropy in the nanostructured MnAl system. Appl. Phys. Lett. 100, 112408–1-4 (2012)

    Google Scholar 

  106. Chaturvedi, A., Yaqub, R., Baker, I.: A comparison of τ-MnAl particulates produced via different routes. J. Phys. Condens. Matter. 26, 064201–1-7 (2014)

    Google Scholar 

  107. Pasko, A., LoBue, M., Fazakas, E., Varga, L. K., Mazaleyrat, F.: Spark plasma sintering of Mn-Al-C hard magnets. J. Phys. Condens. Matter 26, 064203–1-7 (2014)

    Google Scholar 

  108. Manchanda, P., Kumar, P., Kashyap, A., Lucis, M.J., Shield, J.E., Mubarok, A., Goldstein, J., Constantinides, S., Barmak, K., Lewis, L.-H., Sellmyer, D.J., Skomski, R.: Intrinsic properties of Fe-substituted L10 magnets. IEEE Trans. Magn. 49(10), 5194–5198 (2013)

    Article  ADS  Google Scholar 

  109. Lewis, L. H., Barmak, K., Goldstein, J. G., Pinkerton, F., Skomski, R.: Towards stabilization of L10-type FeNi compounds for permanent magnet applications. Proc. REPM’12, Nagasaki, p. 102–105 (2012)

    Google Scholar 

  110. Lewis, L. H., Mubarok, A., Poirier, E., Bordeaux, N., Manchanda, P., Kashyap, A., Skomski, R., Goldstein, J., Pinkerton, F. E., Mishra, R. K., Kubic R. C., Jr., Barmak, K.: Inspired by nature: investigating tetrataenite for permanent magnet applications. J. Phys. Condens. Matter 26, 064213–1-10 (2014)

    Google Scholar 

  111. Lewis, L. H., Pinkerton, F. E., Bordeaux, N., Mubarok, A., Poirier, E., Goldstein, J. I., Skomski, R. Barmak, K.: De magnete et meteorite: Cosmically motivated materials. IEEE Magn. Lett. 5, 5500104–1-4 (2014)

    Google Scholar 

  112. Coey, J.M.: Magnetism and Magnetic Materials. University Press, Cambridge (2010)

    Book  Google Scholar 

  113. Coey, J. M. D.: New permanent magnets; manganese compounds. J. Phys. Condens. Matter 26, 064211–1-6 (2014)

    Google Scholar 

  114. Heusler, F.: Über manganbronze und über die synthese magnetisierbarer legierungen aus unmagnetischen metallen. Z. Angew. Chem. 17, 260–264 (1904)

    Article  Google Scholar 

  115. Goodenough, J.B.: Magnetism and the Chemical Bond. Wiley, New York (1963)

    Google Scholar 

  116. Kharel, P., Skomski, R., Lukashev, P., Sabirianov, R., Sellmyer, D. J.: Spin correlations and Kondo effect in a strong ferromagnet. Phys. Rev. B. 84, 014431–1-5 (2011)

    Google Scholar 

  117. Kang, K., Lewis, L. H., Moodenbaugh, A. R.: Alignment and analyses of MnBi/Bi nanostructures. Appl. Phys. Lett. 87, 062505–1-3 (2005)

    Google Scholar 

  118. Cui, J., Choi, J. P., Li, G., Polikarpov, E., Darsell, J., Overman, N., Olszta, M., Schreiber, D., Bowden, M., Droubay, T., Kramer, M. J., Zarkevich, N. A., Wang, L. L., Johnson, D. D., Marinescu, M., Takeuchi, I., Huang, Q. Z., Wu, H., Reeve, H., Vuong, N. V., Liu, J. P.: Thermal stability of MnBi magnetic materials. J. Phys. Condens. Matter 26, 064212–1-10 (2014)

    Google Scholar 

  119. Skomski, R., Manchanda, P., Takeuchi, I., Cui, J.: Geometry dependence of magnetization reversal in nanocomposite alloys. J. Metals. 66, 1144–1150 (2014)

    Google Scholar 

  120. Heusler, F.: Über magnetische manganlegierungen. Verhandl. Deut. Physik. Ges. 5, 219–223 (1903)

    Google Scholar 

  121. Kharel, P., Huh, Y., Al-Aqtash, N., Shah, V. R., Sabirianov, R. F., Skomski, R., Sellmyer, D. J.: Structural and magnetic transitions in cubic Mn3Ga. J. Phys. Condens. Matter 26, 126001–1-8 (2014)

    Google Scholar 

  122. Liu, J.P., Skomski, R., Liu, Y., Sellmyer, D.J.: Temperature dependence of magnetic hysteresis of RCox:Co nanocomposites (R = Pr and Sm). J. Appl. Phys. 87, 6740–6742 (2000)

    Article  ADS  Google Scholar 

  123. Lyubina, J., Müller, K.-H., Wolf, M., Hannemann, U.: A two-particle exchange interaction model. J. Magn. Magn. Mater. 322, 2948–2955 (2010)

    Article  ADS  Google Scholar 

  124. Skomski, R., Liu, J.-P., Sellmyer, D.J.: Quasicoherent nucleation mode in two-phase nanomagnets. Phys. Rev. B 60, 7359–7365 (1999)

    Article  ADS  Google Scholar 

  125. Aharoni, A.: Introduction to the Theory of Ferromagnetism. University Press, Oxford (1996)

    Google Scholar 

  126. Skomski, R.: Micromagnetic localization. J. Appl. Phys. 83, 6503–6505 (1998)

    Article  ADS  Google Scholar 

  127. Skomski, R., Coey, J.M.D.: Exchange coupling and energy product in random two-phase aligned magnets. IEEE Trans. Magn. 30(2), 607–609 (1994)

    Article  ADS  Google Scholar 

  128. Schrefl, T., Fidler, J.: Micromagnetic simulation of magnetizability of nanocomposite Nd–Fe–B magnets. J. Appl. Phys. 83, 6262–6264 (1998)

    Article  ADS  Google Scholar 

  129. Szlaferek, A.: Model exchange-spring nanocomposite magnetic grains. Phys. Stat. Sol. B. 241, 1312–1315 (2004)

    Article  ADS  Google Scholar 

  130. Skomski, R.: Optimum hard-soft geometries: science, wishful thinking, and technology. (invited). Proc. REPM'14, Annapolis, p. 129–132 (2014)

    Google Scholar 

  131. Skomski, R., Hadjipanayis, G. C., Sellmyer, D. J.: Graded permanent magnets. J. Appl. Phys. 105, 07A733-1-3 (2009)

    Google Scholar 

  132. Becker, R., Döring, W.: Ferromagnetismus. Springer, Berlin (1939)

    Book  Google Scholar 

  133. Skomski, R., Kumar, P., Hadjipanayis, G.C., Sellmyer, D.J.: Finite-temperature micromagnetism. IEEE Trans. Magn. 49(7), 3229–3232 (2013)

    Article  ADS  Google Scholar 

  134. Néel, L.: Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5, 99–136 (1949)

    Google Scholar 

  135. Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963)

    Article  ADS  Google Scholar 

  136. Street, R., Woolley, J.C.: A study of magnetic viscosity. Proc. Phys. Soc. A 62, 562–572 (1949)

    Article  ADS  Google Scholar 

  137. Kneller, E.: Theorie der magnetisierungskurve kleiner kristalle. In: Wijn, H.P.J. (ed.) Handbuch der Physik XIII/2: Ferromagnetismus, pp. 438–544. Springer, Berlin (1966)

    Google Scholar 

  138. Sharrock, M.P.: Time dependence of switching fields in magnetic recording media. J. Appl. Phys. 76, 6413–6418 (1994)

    Article  ADS  Google Scholar 

  139. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  140. Skomski, R., Kirby, R.D., Sellmyer, D.J.: Activation entropy, activation energy, and magnetic viscosity. J. Appl. Phys. 85, 5069–5071 (1999)

    Article  ADS  Google Scholar 

  141. Dittrich, R., Schrefl, T., Kirschner, M., Suess, D., Hrkac, G., Dorfbauer, F., Ertl, O., Fidler, J.: Thermally induced vortex nucleation in permalloy elements. IEEE Trans. Magn. 41(10), 3592–3594 (2005)

    Article  ADS  Google Scholar 

  142. Skomski, R.: Role of thermodynamic fluctuations in magnetic recording (invited). J. Appl. Phys. 101, 09B104-1-6 (2007)

    Google Scholar 

  143. Egami, T.: Theory of intrinsic magnetic after-effect i. thermally activated process. Phys. Stat. Sol. A. 19, 747–758 (1973)

    Google Scholar 

  144. Braun, H.-B.: Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012)

    Article  ADS  Google Scholar 

  145. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  146. Shen, J., Skomski, R., Klaua, M., Jenniches, H., Manoharan, S.S., Kirschner, J.: Magnetism in one dimension: Fe on Cu(111). Phys. Rev. B 56, 2340–2343 (1997)

    Article  ADS  Google Scholar 

  147. This procedure works in one dimension only, because the τi cannot be defined unambiguously in two and three dimensions

    Google Scholar 

  148. Cui, B. Z., Gabay, A. M., Li, W. F., Marinescu, M., Liu, J. F., Hadjipanayis, G. C.: Anisotropic SmCo5 nanoflakes by surfactant-assisted high energy ball milling. J. Appl. Phys. 107, 09A721-1-3 (2010)

    Google Scholar 

Download references

Acknowledgment

This chapter is partially based on original research supported by DOE BES (DE-FG02-04ER46152, Sect. 3), ARO (Nr. WF911NF-10-2-0099, Sect. 4), ARPA-E (PNNL/Maryland and Argonne/Delaware), DREaM (Ames), HCC, and NCMN. It has also benefitted from discussions and collaborations with B. Balamurugan, R. Choudhary, J. M. D. Coey, S. Constantinides, J. Cui, B. Das, A. Enders, G. C. Hadjipanayis, S. Hirosawa, Y. Jin, A. Kashyap, L.-Q. Ke, M. J. Kramer, L. H. Lewis, S.-H. Liou, J. P. Liu, Y. Liu, P. Kumar, P. Manchanda, R. W. McCallum, F. Pinkerton, T. Rana, S. G. Sankar, J. E. Shield, D. J. Sellmyer, S. Valloppilly, V. Sharma, I. Takeuchi, and W.-Y. Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Skomski .

Editor information

Editors and Affiliations

Appendix: Units in Magnetism

Appendix: Units in Magnetism

It is generally recommended to use the international or SI system or transparent units differing by multiples of 10, such as Å = 100 pm. Some researchers, most notably in the USA and China, continue to us the cgs system, which was developed by Carl Friedrich Gauß around 1830. The British Association for the Advancement of Science officially endorsed and widely popularized the Gaussian system in 1874 but replaced it in 1889 by the MKS predecessor of the SI system.

In strict sense, today’s Gaussian system is a “reduced” or dimensionless system as far as magnetism is concerned. The situation is similar to the atomic unit (a.u.) system, where all physical quantities are made dimensionless by division, using combinations of quantities such as Bohr’s hydrogen radius ao = 0.529 Å. Similar to “a.u.,” “emu” is not a unit but a reminder that the moment is measured in a variant of the cgs system. The expression “emu/cm3” is also such a reminder, albeit slightly differently structured by involving cm, which is a well-defined length unit. The Gaussian system exhibits some oddities that can never happen in a physically meaningful unit system. For example, multiplication of the magnetization by the dimensionless number 4π changes the units from emu/cm3 to kG. In the SI, this problem does not occur, because the corresponding quantities are connected through the permeability of free space, μo = 4π × 10−7 N/A2. (N/A2 can be written in a variety of equivalent SI forms, notably H/m, T . m/A, Wb/A . m and V . s/A . m.) Note that electrostatic units (esu) are rarely used today, and few solid-state scientists can even recall the electron charge in esu units (e = 4.803 . 1010 esu).

As far as permanent magnetism is concerned, the only shortcoming of the SI system is that the magnetization is measured in A/m. This feature dates back to the nineteenth century, when scientists believed that the magnetization was caused by microscopic currents. We now know that this is incorrect: currents, or orbital moments, are largely quenched in materials like Fe and Co , where most of the magnetization is caused by the spin. Explaining the spin by local currents implies that the electron’s charge distribution moves with a velocity larger than the velocity of light, which is not a meaningful physical concept. The role of μo in the conversion between A/m and T may be compared to the role of kB in the conversion between temperature (K) and energy (J): a typical dust particle, of radius 1 μm and one millimeter above the ground, has a potential energy of about 10−16 J. There is nothing wrong with quoting this energy as a temperature, about 107 K, unless one believes that this temperature is actually the temperature of the dust particle.

The situation in permanent magnetism would be much easier if B, M, and H had the same unit (T). A seeming counterargument is that H and the flux density B are physically different and should therefore have different units , but the example of energy and torque, both measured in Nm, proves that different physical quantities do not need different units. J = μoH is sometimes used, but J also denotes exchange and the total angular momentum, which creates a messy situation in some contexts. Expressions such as Br = μoMr are common, but they obscure the situation as far as physics is concerned. A compromise, used in the present chapter, is to consider the magnetization μoM and the magnetic field μoH, both measured in tesla (T). Here are some informal conversion rules for cgs and A/m aficionados: 1 T = 10 kG = 10 kOe, 1 T = 10/4π MA/m ≈ 800 kA/m, 1 emu/cm3 = 1 kA/m, 1000 kA/m = 4π/10 T ≈ 1.25 T, 1 kA/m = 4π Oe ≈ 12.5 Oe, 1 MGOe = 100/4π kJ/m3 ≈ 8 kJ/m3, 1 kJ/m3 = 4π/100 MGOe ≈ 0.125 MGOe, 1 kJ/m3 = 1 kPa, 100 MGOe = 1 T2, 1 kOe = 1000/4π kA/m ≈ 80 kA/m.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skomski, R. (2016). Permanent Magnets: History, Current Research, and Outlook. In: Zhukov, A. (eds) Novel Functional Magnetic Materials. Springer Series in Materials Science, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-26106-5_9

Download citation

Publish with us

Policies and ethics