Skip to main content

Ringing Artifact Suppression Using Sparse Representation

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9386))

Abstract

The article refers to the problem of ringing artifact suppression. The ringing effect is caused by high-frequency information corruption or loss, it appears as waves or oscillations near strong edges. We propose a novel method for ringing artifact suppression after Fourier cut-off filtering. It can be also used for image deringing in the case of image resampling and other applications where the frequency loss can be estimated. The method is based on the joint sparse coding approach. The proposed method preserves more small image details than the state-of-the-art algorithms based on total variation minimization, and outperforms them in terms of image quality metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  2. Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8, 679–714 (1986)

    Article  Google Scholar 

  3. Elad, M., Figueiredo, M.A., Ma, Y.: On the role of sparse and redundant representations in image processing. Proceedings of the IEEE 98(6), 972–982 (2010)

    Article  Google Scholar 

  4. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transforms: a comparative survey. ACM Computing Surveys 40(1), 2:1–2:44 (2008)

    Article  Google Scholar 

  5. Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9(3), 90–95 (2007)

    Article  Google Scholar 

  6. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/ (online accessed April 30, 2015)

  7. Liu, H., Klomp, N., Heynderickx, I.: A perceptually relevant approach to ringing region detection. IEEE Transactions on Image Processing 19(6), 1414–1426 (2010)

    Article  MathSciNet  Google Scholar 

  8. Lukin, A., Krylov, A., Nasonov, A.: Image interpolation by super-resolution. In: 16th International Conference Graphicon 2006, pp. 239–242. Novosibirsk Akademgorodok, Russia, July 2006

    Google Scholar 

  9. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (1999)

    Google Scholar 

  10. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  11. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: Perceptual blur and ringing metrics: application to JPEG2000. Signal Processing: Image Communication 19, 163–172 (2004)

    Google Scholar 

  12. MMIP Lab: MMIP Ringing Database (2015). http://imaging.cs.msu.ru/en/research/ringing/database

  13. Mosleh, A., Langlois, J.M.P., Green, P.: Image deconvolution ringing artifact detection and removal via psf frequency analysis. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 247–262. Springer, Heidelberg (2014)

    Google Scholar 

  14. Nasonov, A.V., Krylov, A.S.: Finding areas of typical artifacts of image enhancement methods. Pattern Recognition and Image Analysis 21(2), 316–318 (2011)

    Article  Google Scholar 

  15. Nasonov, A.V., Krylov, A.S.: Image enhancement quality metrics. In: 21th International Conference on Computer Graphics GraphiCon 2011, pp. 128–131 (2011)

    Google Scholar 

  16. Nasonov, A.V., Krylov, A.S.: Edge quality metrics for image enhancement. Pattern Recognition and Image Analysis 22(1), 346–353 (2012)

    Article  Google Scholar 

  17. Nasonov, A.V., Krylov, A.S.: Adaptive image deringing. In: Proceedings of GraphiCon 2009, pp. 151–154 (2009)

    Google Scholar 

  18. Nasonova, A.A., Krylov, A.S.: Determination of image edge width by unsharp masking. Computational Mathematics and Modeling 25(1), 72–78 (2014)

    Article  Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    MATH  Google Scholar 

  20. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008-a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics 10(4), 30–45 (2009)

    Google Scholar 

  21. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database rel. 2 (2005)

    Google Scholar 

  23. Sitdikov, I.T., Krylov, A.S.: Variational image deringing using varying regularization parameter. Pattern Recognition and Image Analysis 25(1), 96–100 (2015)

    Article  Google Scholar 

  24. Umnov, A.V., Nasonov, A.V., Krylov, A.S., Yong, D.: Sparse method for ringing artifact detection. In: 2014 12th International Conference on Signal Processing (ICSP), pp. 662–667. IEEE (2014)

    Google Scholar 

  25. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Transactions on Image Processing 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey S. Krylov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Umnov, A.V., Krylov, A.S., Nasonov, A.V. (2015). Ringing Artifact Suppression Using Sparse Representation. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25903-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25902-4

  • Online ISBN: 978-3-319-25903-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics