Skip to main content

The Role of Thyroid Hormones in Neural Development

  • Chapter
  • First Online:
Thyroid Disorders
  • 1724 Accesses

Abstract

A key aim of this chapter was to review the molecular events associated with the regulation of neural development by thyroid hormones. These molecules are produced in the thyroid gland, and secreted into the bloodstream, where they interact with a number of carrier proteins to facilitate distribution to target tissues. A range of transporter proteins are also present to facilitate uptake in tissues that require TH for their normal development. Research over several decades has shown that TH can regulate neural gene expression both at the transcriptional and post-transcriptional levels. This review focuses partly on the ability of TH to modulate genes encoding cytoskeletal proteins involved in the regulation neural cell proliferation and differentiation, and how dysregulation of TH is associated with cytoskeletal disruption. It also discusses selected non-genomic mechanisms by which TH can influence cytoskeletal involvement in development and other important cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal J. Thyroid hormones and brain development. Vitam Horm. 2005;71:95–122.

    Article  CAS  PubMed  Google Scholar 

  2. Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Prac Endocrinol Metab. 2007;3:249–59.

    Article  CAS  Google Scholar 

  3. Ahmed OM, El-Gareib AW, El-Bakry AM, El-Tawab SMA, Ahmed RG. Thyroid hormones states and brain development interactions. Int J Dev Neurosci. 2008;26:147–209.

    Article  CAS  PubMed  Google Scholar 

  4. Patel J, Landers K, Li H, Mortimer RH, Richard K. Delivery of maternal thyroid hormone to the fetus. Trends Endocrinol Metab. 2011;22:164–70.

    Article  CAS  PubMed  Google Scholar 

  5. Patel J, Landers K, Mortimer RH, Richard K. Thyroid hormones and foetal neurological development. J Endocrinol. 2011;209:1–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bauer M, Heinz A, Whybrow PC. Thyroid hormones serotonin and mood: of synergy and significance in the adult brain. Mol Psychiatry. 2002;7:140–56.

    Article  CAS  PubMed  Google Scholar 

  7. Diez D, Gritoja-Martinez C, Agretti P, De Marco G, Tonacchera M, Pinchera A, Morreale de Escobar G, Bernal J, Morte B. Thyroid hormone action in the adult brain: Gene expression profiling of the effects of single and multiple doses of triiodo-L-thyronine in the rat striatum. Endocrinology. 2008;149:3989–4000.

    Article  CAS  PubMed  Google Scholar 

  8. Nussey S, Whitehead S. Endocrinology: an integrated approach. Oxford: BIOS Scientific Publishers; 2001.

    Book  Google Scholar 

  9. Zimmermann MB. Iodine deficiency. Endocr Rev. 2009;30:376–408.

    Article  CAS  PubMed  Google Scholar 

  10. Bizhanova A, Kopp P. Minireview: the sodium-iodide symporter and pendrin in iodide homeostasis of the thyroid. Endocrinology. 2009;150:1084–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fong P. Thyroid iodide efflux: a team effort? J Physiol. 2011;589:5929–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Twyffels L, Massart C, Goldstein PE, Raspe E, Van Sande J, Dumont JE, Beauwens R, Kruys V. Pendrin: the thryocyte apical membrane iodide transporter? Cell Physiol Biochem. 2011;28:491–6.

    Article  CAS  PubMed  Google Scholar 

  13. Pommier J, Deme D, Nunez J. Effect of iodide concentration on thyroxine synthesis catalysed by thyroid peroxidase. Eur J Biochem. 1973;37:406–14.

    Article  CAS  PubMed  Google Scholar 

  14. Ruf J, Carayon P. Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys. 2006;445:269–77.

    Article  CAS  PubMed  Google Scholar 

  15. Marinò M, McCluskey RT. Role of thyroglobin endocytic pathways in the control of thyroid hormone release. Am J Physiol Cell Physiol. 2000;279:C1295–306.

    PubMed  Google Scholar 

  16. Chatterjee KK, Lee JK, Rentoumis A, Jameson JL. Negative regulation of the thyroid-stimulating hormone α gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc Natl Acad Sci U S A. 1989;86:9114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larsson M, Petterson T, Carlström A. Thyroid hormone binding in serum of 15 vertebrate species. Isolation of thyroxine binding globulin and prealbumin analogs. Gen Comp Endocrinol. 1985;58:360–5.

    Article  CAS  PubMed  Google Scholar 

  18. McKinnon B, Li H, Richard K, Mortimer R. Synthesis of thyroid binding proteins transthyretin and albumin by human trophoblast. J Clin Endocrinol Metab. 2005;90:6714–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kassem NA, Deane R, Segal MB, Preston JE. Role of transthyretin in thyroxine transfer from cerebrospinal fluid to brain and choroid plexus. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1310–5.

    Article  CAS  PubMed  Google Scholar 

  20. Wirth EK, Schweizer U, Köhrle J. Transport of thyroid hormone in brain. Front Endocrinol. 2014;5:98.

    Article  Google Scholar 

  21. Benvenga S, Cahnmann HJ, Robbins J. Localization of the thyroxine binding sites in apolipoprotein B-100 of human low density lipoproteins. Endocrinology. 1990;127:2241–6.

    Article  CAS  PubMed  Google Scholar 

  22. Morreale de Escobar G, Obregon MJ, Escobar del Rey F. Maternal thyroid hormones early in pregnancy and foetal brain development. Best Prac Res Clin Endocrinol Metab. 2004;18:225–48.

    Article  CAS  Google Scholar 

  23. Landers KA, Li H, Subramaniam VN, Mortimer RH, Richard K. Transerythretin-thyroid hormone internalisation by trophoblasts. Placenta. 2013;34:716–8.

    Article  CAS  PubMed  Google Scholar 

  24. Loubière LS, Vasilopoulou E, Bulmer JN, Taylor PM, Steiger B, Verrey F, McCabe CJ, Franklyn JA, Kilby MD, Chan SY. Expression of thyroid hormone transporters in the human placenta and changes associated with intrauterine growth restriction. Placenta. 2010;31:295–304.

    Article  PubMed  Google Scholar 

  25. Larsen PD, DeLallo L. Cerebrospinal fluid transthyretin in the neonate and blood cerebrospinal fluid permeability barrier. Ann Neurol. 1985;25:628–30.

    Article  Google Scholar 

  26. Zheng W, Lu YM, Lu GY, Zhao Q, Cheung O, Blaner WS. Transthyretin, thyroxine and retinol-binding protein in human cerebrospinal fluid: Effect of lead exposure. Toxicol Sci. 2001;61:107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wirth E, Roth S, Blechschmidt C, Hölter SM, Becker L, Racz I, Zimmer A, Klopstock T, Gailus-Durner V, Fuchs H, Wurst W, Naumann T, Bräuer A, Hrabé de Angelis M, Köhrle J, Grüters A, Schweizer U. Neuronal 3’,3,5-triiodothyronine (T3) uptake and behavioural phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley Syndrome. J Neurosci. 2009;29:9439–49.

    Article  CAS  PubMed  Google Scholar 

  28. Freisema ECH, Visser TJ, Borgers AJ, Kalsbeek A, Swaab DF, Fliers E, Alkemade A. Thyroid hormone transporters and deiodinases in the developing human hypothalamus. Eur J Endocrinol. 2012;167:379–86.

    Article  Google Scholar 

  29. Braun D, Wirth EK, Schweizer U. Thyroid hormone transporters in the brain. Rev Neurosci. 2010;21:173–86.

    Article  CAS  PubMed  Google Scholar 

  30. Verhoelst CH, Roelens SA, Darras VM. Role of spatiotemporal expression of iodothyronine deiodinase proteins in cerebellar cell organisation. Brain Res Bull. 2005;67:196–202.

    Article  CAS  PubMed  Google Scholar 

  31. Dentice M, Salvatore D. Deiodinases: the balance of thyroid hormone local impact. Local impact of thyroid hormone inactivation. J Endocrinol. 2011;209:273–82.

    Article  CAS  PubMed  Google Scholar 

  32. Farwell AP, Leonard JL. Identification of a 27 kDa protein with the properties of type II iodothyronine 5’-deiodinase in dibutyryl cAMP-stimulated glial cells. J Biol Chem. 1989;264:20561–7.

    CAS  PubMed  Google Scholar 

  33. Guadaño-Ferraz A, Obrgón MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A. 1997;94:10391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ruel J, Faure R, Dussault JH. Regional distribution of nuclear T3 receptors in rat brain and evidence for preferential localization in neurons. J Endocrinol Invest. 1985;8:343–8.

    Article  CAS  PubMed  Google Scholar 

  35. Forrest D, Hallbook F, Persson H, Vennström B. Distinct functions for thyroid hormone receptors α and β in brain development as indicated by differential expression of receptor genes. EMBO J. 1991;10:269–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81:1097–142.

    CAS  PubMed  Google Scholar 

  37. Thompson CP, Potter GB. Thyroid hormone action in neural development. Cereb Cortex. 2000;10:939–45.

    Article  CAS  PubMed  Google Scholar 

  38. DeLong GR. The neuromuscular system and brain in hypothyroidism. In: Braverman LE, Utiger RD, editors. The thyroid. New York: JP Lippincott; 1996. p. 826–35.

    Google Scholar 

  39. Gong J, Liu W, Dong J, Wang Y, Xu H, Wei W, Zhong J, Xi Q, Chen J. Developmental iodine deficiency and hypothyroidism impair neural development in rat hippocampus: Involvement of doublecortin and NCAM-180. BMC Neurosci. 2010;11:50.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Glinoer D, Delange F. The potential repercussions of maternal, fetal and neonatal hypothyroxinemia on the progeny. Thyroid. 2000;10:871–87.

    Article  CAS  PubMed  Google Scholar 

  41. Vermiglio F, Lo Presti VP, Moleti M, Sidoti M, Tortorella G, Scaffidi G, Castagna MG, Mattina F, Violi MA, Crisa A, Atremisia A, Trimarchi F. Attention deficit and hyperactivity disorders in the offspring of mothers exposed to mild-moderate iodine deficiency: a possible novel iodine deficiency disorder in developed countries. J Clin Endocrinol Metab. 2004;89:6054–60.

    Article  CAS  PubMed  Google Scholar 

  42. Kasatkina EP, Samsonova LN, Ivakhnenko VN, Ibragimova GV, Ryabykh AV, Naumenko LL, Evodkimova YA. Gestational hypothyroxinemia and cognitive function in offspring. Neurosci Behav Physiol. 2006;36:619–24.

    Article  CAS  PubMed  Google Scholar 

  43. Kooistra L, Crawford S, van Baar AL, Brouwers EP, Pop VJ. (2006) Neonatal effects of maternal hypothyroxinemia during early pregnancy. Pediatrics. 2006;117:161–7.

    Article  PubMed  Google Scholar 

  44. Opazo MC, Gianini A, Pancetti F, Azkcona G, Alarcón L, Lizana R, Noches V, Gonzalez PA, Porto M, Mora S, Rosenthal D, Eugenin E, Naranjo D, Bueno SM, Kalergis AM, Riedel CA. Maternal hypothyroxinemia impairs spatial learning and synaptic nature and function in the offspring. Endocrinology. 2008;149:5097–106.

    Article  CAS  PubMed  Google Scholar 

  45. Chakraborty G, Magagna-Poveda A, Parratt C, Umans JG, MacLuskey NJ, Scharfman HE. Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal rats after prenatal exposure to propylthiouracyl (PTU). Endocrinology. 2012;153:1311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berbel P, Navarro D, Ausó E, Varea E, Rodríguez AE, Ballesta JJ, Salina M, Flores E, Faura CC, Morreale de Escobar G. Role of late maternal thyroid hormones in cerebral cortex development: an experimental model for human prematurity. Cereb Cortex. 2010;20:1462–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hargreaves A, Yusta B, Aranda A, Avila J, Pascual A. Triiodothyronine (T3) induces neurite formation and increases synthesis of a protein related to MAP 1B in cultured cells of neuronal origin. Brain Res. 1988;38:141–8.

    Article  CAS  Google Scholar 

  48. Sampson D, Pickard MR, Sinha AK, Evans IM, Leonard AJ, Ekins RP. Maternal thyroid status regulates the expression of neuronal and astrocytic cytoskeletal proteins in the fetal brain. J Endocrinol. 2000;167:439–45.

    Article  CAS  PubMed  Google Scholar 

  49. Rahaman SO, Ghosh S, Mohanakumar KP, Das S, Sarkar PK. Hypothyroidism in the developing rat brain is associated with marked oxidative stress and aberrant intraneuronal accumulation of neurofilaments. Neurosci Res. 2001;40:273–9.

    Article  CAS  PubMed  Google Scholar 

  50. Volnesco F, Glauser L, Kraftsik R, Barakat-Walter I. Local administration of thyroid hormones in silicone chamber increases regeneration of transacted rat sciatic nerve. Exp Neurol. 1998;150:69–81.

    Article  Google Scholar 

  51. Schenker M, Riederer BM, Kuntzer T, Barakat-Walter I. Thyroid hormones stimulate expression and modification of cytoskeletal protein during rat sciatic nerve regeneration. Brain Res. 2002;957:259–70.

    Article  CAS  PubMed  Google Scholar 

  52. Barakat-Walter I. Role of thyroid hormones and their receptors in peripheral nerve regeneration. J Neurobiol. 1999;40:541–59.

    Article  CAS  PubMed  Google Scholar 

  53. Salemi G, Ferraro D, Savettieri G. Triiodothyronine accelerates the synthesis of synapsin I in developing neurons from rat brain cultured in a synthetic medium. Neurochem Res. 1990;15:827–31.

    Article  CAS  PubMed  Google Scholar 

  54. Heisenberg CP, Thoenen H, Lindholm D. Tri-iodothyronine regulates survival and differentiation of rat cerebellar granule neurons. Neuroreport. 1992;3:685–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hosoda R, Nakayama K, Kato-Negishi M, Kawahara M, Muramoto K, Kuroda Y. Thyroid hormone enhances the formation of synapses between cultured neurons of rat cerebral cortex. Cell Mol Neurobiol. 2003;23:895–906.

    Article  CAS  PubMed  Google Scholar 

  56. Garza R, Dussault JH, Puymirat J. Influence of triiodothyronine (L-T3) on the morphological and biochemical development of fetal brain acetylcholinesterase-positive neurons cultured in a chemically defined medium. Brain Res. 1988;43:287–97.

    Article  CAS  Google Scholar 

  57. Cayrou C, Denver RJ, Puymirat J. Suppression of the basic transcription element-binding protein in brain neuronal cultures inhibits thyroid hormone induced neurite branching. Endocinology. 2002;143:2242–9.

    Article  CAS  Google Scholar 

  58. Boukhtouche F, Brugg B, Wehrlé R, Bois-Joyeux B, Danan JL, Dusart I, Mariani J. Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORα. Neural Dev. 2010;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ohkawa N, Fujitani K, Tokunaga E, Furuya S, Inokuchi K. The microtubule destabilizer stathmin mediates the development of dendritic arbors in neuronal cells. J Cell Sci. 2007;120:1447–56.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Wang Y, Dong J, Wei W, Song B, Min H, Teng W, Chen J. Developmental hypothyroxinaemia and hypothyroidism limit dendritic growth of cerebellar Purkinje cells in rat offspring: involvement of microtubule-associated protein 2 (MAP2) and stathmin. Neuropathol Appl Neurobiol. 2014;40:398–415.

    Article  CAS  PubMed  Google Scholar 

  61. Ortiz-Caro J, Yusta B, Montiel F, Villa A, Aranda A, Pascual A. Identification and characterization of L-triiodothyronine receptors in cells of glial and neuronal origin. Endocrinology. 1986;119:2163–7.

    Article  CAS  PubMed  Google Scholar 

  62. Luo M, Puymirat J, Dussault JH. Immunocytochemical localization of nuclear 3,5,3’-triiodothyronine (L-T3) receptors in astrocyte cultures. Brain Res. 1989;46:131–6.

    Article  CAS  Google Scholar 

  63. Hubank M, Sinha AK, Gullo D, Ekins RP. Nuclear tri-iodothyronine (T3) binding in neonatal rat brain suggests a direct glial requirement for T3 during development. J Endocrinol. 1990;126:409–15.

    Article  CAS  PubMed  Google Scholar 

  64. Baas D, Bourbeau D, Sarliève LL, Ittel ME, Dussault JH, Puymirat J. Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia. 1997;19:324–32.

    Article  CAS  PubMed  Google Scholar 

  65. Carré JL, Demerens C, Rodríguez-Peña A, Floch HH, Vincendron G, Sarliève LL. Thyroid hormone receptor isoforms are sequentially expressed in oligodendrocyte lineage cells during rat cerebral development. J Neurosci Res. 1998;54:584–94.

    Article  PubMed  Google Scholar 

  66. Trentin AG, Moura Neto V. T3 affects astrocyte proliferation, GFAP and fibronectin organization. Neuroreport. 1995;6:293–6.

    Article  CAS  PubMed  Google Scholar 

  67. Paul S, Das S, Poddar R, Sarkar PK. Role of thyroid hormone in the morphological differentiation and maturation of astrocytes: temporal correlation with synthesis and organisation of actin. Eur J Neurosci. 1996;8:2361–70.

    Article  CAS  PubMed  Google Scholar 

  68. Lima FRS, Trentin AG, Rosenthal D, Chaga C, Moura Neto V. Thyroid hormone induces protein secretion and morphological changes in astroglial cells with an increase in expression of glial fibrillary acidic protein. J Endocrinol. 1997;154:167–75.

    Article  CAS  PubMed  Google Scholar 

  69. Trentin AG, Rosenthal D, Moura Neto V. Thyroid hormone and conditioned medium effects on astroglial cells from hypothyroid and normal rat brain: factor secretion, cell differentiation and proliferation. J Neurosci Res. 1995;41:409–17.

    Article  CAS  PubMed  Google Scholar 

  70. Trentin AG, Nedel Mendes de Aguiar CB, Castilho Garcez R, Alvarez-Silva M. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocytes: Effects on astrocyte adhesion. Glia. 2003;42:359–69.

    Article  PubMed  Google Scholar 

  71. Martinez R, Carvalho Alcantara Gomes F. Proliferation of cerebellar neurons induced by astrocytes treated with thyroid hormone is mediated by a co-operation between cell contact and soluble factors and involves the epidermal growth factor-protein kinase A pathway. J Neurosci Res. 2005;80:341–9.

    Article  CAS  PubMed  Google Scholar 

  72. Chaudhury S, Sarkar PK. Stimulation of tubulin synthesis by thyroid hormone in the developing rat brain. Biochim Biophys Acta. 1983;763:93–8.

    Article  CAS  PubMed  Google Scholar 

  73. De A, Chaudhury S, Sarkar PK. Thyroidal stimulation of tubulin and actin in primary cultures of neuronal and glial cells of rat brain. Int J Dev Neurosci. 1991;9:381–90.

    Article  CAS  PubMed  Google Scholar 

  74. Pal U, Biswas SC, Sarkar PK. Regulation of actin and its mRNA by thyroid hormones in cultures of fetal human brain during second trimester of gestation. J Neurochem. 2002;69:1170–6.

    Article  Google Scholar 

  75. Aniello F, Couchie D, Bridoux AM, Gripois D, Nunez J. Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone. Proc Natl Acad Sci U S A. 1991;88:4035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poddar R, Paul S, Chaudhury S, Sarkar PK. Regulation of actin and tubulin gene expression by thyroid hormone during rat brain development. Mol Brain Res. 1996;35:111–8.

    Article  CAS  PubMed  Google Scholar 

  77. Lorenzo PI, Ménard C, Miller FD, Bernal J. Thyroid hormone-dependent regulation of Tα1 α-tubulin during brain development. Mol Cell Neurosci. 2002;19:333–43.

    Article  CAS  PubMed  Google Scholar 

  78. Cuadrado A, García-Fernández LF, Imai T, Okano H, Muñoz A. Regulation of tau RNA maturation by thyroid hormone is mediated by the neural RNA-binding protein Musashi-1. Mol Cell Neurosci. 2002;20:198–210.

    Article  CAS  PubMed  Google Scholar 

  79. Cuadrado A, Navarro-Yubero C, Furneaux H, Muñoz A. Neuronal HuD gene encoding a mRNA stability regulator is transcriptionally repressed by thyroid hormone. J Neurochem. 2003;86:763–73.

    Article  CAS  PubMed  Google Scholar 

  80. Davis PJ, Davis FB. Nongenomic actions of thyroid hormone. Thyroid. 1996;6:497–594.

    Article  CAS  PubMed  Google Scholar 

  81. Davis PJ, Davis FB, Lin HY. L-thyroxine acts as a hormone as well as a prohormone at the cell membrane. Immunol Endocr Metab Agents Med Chem. 2006;6:2235–40.

    Article  Google Scholar 

  82. Lin HY, Davis FB, Luidens MK, Mousa SA, Cao JH, Zhou M, Davis PJ. Molecular basis for certain neuroprotective effects of thyroid hormone. Front Mol Neurosci. 2011;4:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Farwell AP, Lynch RM, Okulicz WC, Comi AM, Leonard JL. The actin cytoskeleton mediates the hormonally regulated translocation of type II iodothyronine 5’-deiodinase in astrocytes. J Biol Chem. 1990;265:18546–53.

    CAS  PubMed  Google Scholar 

  84. Siegrist-Kaiser CA, Juge-Aubry C, Tranter MP, Ekenbarger DM, Leonard JL. Thyroxine dependent modulation of actin polymerisation in cultured astrocytes. J Biol Chem. 1990;265:5296–302.

    CAS  PubMed  Google Scholar 

  85. Storey NM, Gentile S, Ullah H, Russo A, Muessel M, Erxleben C, Armstrong DL. Rapid signalling at the plasma membrane by a nuclear receptor for thyroid hormone. Proc Natl Acad Sci U S A. 2006;103:5197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin HY, Davis FB, Gordinier JK, Martino LJ, Davis PJ. Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am J Physiol. 1999;276:1014–24.

    Google Scholar 

  87. Bassett JHD, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol. 2003;213:1–11.

    Article  CAS  PubMed  Google Scholar 

  88. Kavok NS, Krasilnikova OA, Babenko NA. Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone. BMC Cell Biol. 2001;2:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wrutniak-Cabello C, Casas F, Cabello G. Thyroid hormone action in mitocondria. J Mol Endocrinol. 2001;26:67–77.

    Article  CAS  PubMed  Google Scholar 

  90. Das K, Chainy GBN. Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta. 2003;1537:1–13.

    Article  Google Scholar 

  91. Messarah M, Boumendgel A, Chouabia A, Klibet F, Abdennour C, Boulakoud MS, El Feki A. Influence of thyroid dysfunction on liver lipid peroxidation and antioxidant status in experimental rats. Exp Toxicol Pathol. 2010;62:301–10.

    Article  CAS  PubMed  Google Scholar 

  92. Ghosh S, Rahaman SO, Sarkar PK. Regulation of neurofilament gene expression by thyroid hormone in the developing rat brain. Neuroreport. 1999;10:2361–5.

    Article  CAS  PubMed  Google Scholar 

  93. Brent GA. Mechanism of thyroid hormone action. J Clin Invest. 2012;122:3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Hargreaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hargreaves, A.J. (2016). The Role of Thyroid Hormones in Neural Development. In: Imam, S., Ahmad, S. (eds) Thyroid Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-25871-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25871-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25869-0

  • Online ISBN: 978-3-319-25871-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics