Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 2103 Accesses

Abstract

Electrons moving in a periodic potential experience a quantized energy spectrum, where the discrete energy bands are known as Bloch bands. In a magnetic field the spectrum further splits into highly degenerate Landau levels. The interplay between both effects leads to a complex fractal energy spectrum known as Hofstadter’s butterfly. This chapter provides an introduction into the theoretical description of the system in the absence of interactions in terms of magnetic translation symmetries. The topological properties of the system are further discussed in terms of topological invariants, the Chern numbers, which are directly related to the quantization of the Hall conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)

    Article  ADS  Google Scholar 

  2. C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, P. Kim, Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013)

    Google Scholar 

  3. L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil, A.A. Patel, A. Mishchenko, A.S. Mayorov, C.R. Woods, J.R. Wallbank, M. Mucha-Kruczynski, B.A. Piot, M. Potemski, I.V. Grigorieva, K.S. Novoselov, F. Guinea, V.I. Fal’ko, A.K. Geim, Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013)

    Article  ADS  Google Scholar 

  4. B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013)

    Google Scholar 

  5. M. Hafezi, S. Mittal, J. Fan, A. Migdall, J.M. Taylor, Imaging topological edge states in silicon photonics. Nature Photonics 7, 1001–1005 (2013)

    Article  ADS  Google Scholar 

  6. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic Floquet topological insulators. Nature 496, 196–200 (2013)

    Google Scholar 

  7. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  8. H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Realizing the harper hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  9. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. 276, 238–257 (1963)

    Article  ADS  Google Scholar 

  11. N. Ashcroft, N. Mermin, Solid State Physics (Harcourt Brace College Publishers, Fort Worth, 1976)

    MATH  Google Scholar 

  12. C. Kittel, Introduction to Solid State Physics (Wiley, Philadelphia, 2004)

    MATH  Google Scholar 

  13. R. Peierls, Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–791 (1933)

    Article  ADS  MATH  Google Scholar 

  14. E. Brown, Bloch electrons in a uniform magnetic field. Phys. Rev. 133, A1038–A1044 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Zak, Magnetic translation group. Phys. Rev. 134, A1602–A1606 (1964)

    Article  ADS  MATH  Google Scholar 

  16. J. Zak, Magnetic translation group II. irreducible representations. Phys. Rev. 134, A1607–A1611 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. B.A. Bernevig, Topological Insulators and Topological Superconductors. (Princeton University Press, Princeton, 2013)

    Google Scholar 

  18. M.Y. Azbel,Energy spectrum of a conduction electron in a magnetic field. JETP 19 (1964)

    Google Scholar 

  19. P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874 (1955)

    Article  ADS  MATH  Google Scholar 

  20. N. Nemec, G. Cuniberti, Hofstadter butterflies of bilayer graphene. Phys. Rev. B 75, 201404 (2007)

    Article  ADS  Google Scholar 

  21. R. Bistritzer, A.H. MacDonald, Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 84, 035440 (2011)

    Article  ADS  Google Scholar 

  22. T. Hatakeyama, H. Kamimura, Electronic properties of a Penrose tiling lattice in a magnetic field. Solid State Commun. 62, 79–83 (1987)

    Article  ADS  Google Scholar 

  23. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  24. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  ADS  Google Scholar 

  25. D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Y. Hatsugai, Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48, 11851–11862 (1993)

    Article  ADS  Google Scholar 

  28. X.-L. Qi, Y.-S. Wu, S.-C. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators. Phys. Rev. B 74, 045125 (2006)

    Article  ADS  Google Scholar 

  29. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J.T. Barreiro, S. Nascimbène, N.R. Cooper, I. Bloch, N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015)

    Article  ADS  Google Scholar 

  30. A.H. MacDonald, Landau-level subband structure of electrons on a square lattice. Phys. Rev. B 28, 6713–6717 (1983)

    Article  ADS  Google Scholar 

  31. G.H. Wannier, A result not dependent on rationality for bloch electrons in a magnetic field. Phys. Stat. Sol. B 88, 757–765 (1978)

    Article  ADS  Google Scholar 

  32. P. Streda, Quantised hall effect in a two-dimensional periodic potential. J. Phys. C: Solid State Phys. 15, L1299 (1982)

    Article  ADS  Google Scholar 

  33. M. Kohmoto, Zero modes and the quantized Hall conductance of the two-dimensional lattice in a magnetic field. Phys. Rev. B 39, 11943–11949 (1989)

    Article  ADS  Google Scholar 

  34. T. Fukui, Y. Hatsugai, H. Suzuki, Chern numbers in discretized brillouin zone: efficient method of computing (Spin) hall conductances. J. Phys. Soc. Jpn. 74, 1674–1677 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Aidelsburger .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aidelsburger, M. (2016). Square Lattice with Magnetic Field. In: Artificial Gauge Fields with Ultracold Atoms in Optical Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-25829-4_2

Download citation

Publish with us

Policies and ethics