Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 627 Accesses

Abstract

The stability of semiconductor laser operation plays a crucial role in almost every possible application of these devices (Erneux, Glorieux, Laser dynamics, Cambridge University Press, UK, 2010) [1], (Lüdge, Nonlinear laser dynamics—from quantum dots to cryptography, Wiley, Weinheim, 2012) [2], (Chow, Jahnke, Prog Quantum Electron 37:109–184, 2013) [3], (Otto, Dynamics of quantum dot lasers—effects of optical feedback and external optical injection, Springer, Heidelberg, 2014) [4]. In most fields of operation, one would require a stable steady-state output with constant intensity that follows any change in external operating parameters instantaneously, thus enabling, e.g., arbitrarily fast switching of the laser output. In reality such requirements can naturally never be met.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parts of this section have been published in [7, 8].

  2. 2.

    Parts of this section have been published in [35].

  3. 3.

    Parts of this section have been published in [7].

  4. 4.

    Parts of this section have been published in [47].

  5. 5.

    Parts of this section have been published in [47, 54].

  6. 6.

    Parts of this section have been published in [8].

  7. 7.

    Parts of this section have been published in [47].

  8. 8.

    Parts of this section have been published in [8].

References

  1. T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, UK, 2010)

    Book  Google Scholar 

  2. K. Lüdge, Nonlinear Laser Dynamics—From Quantum Dots to Cryptography (Wiley, Weinheim, 2012)

    MATH  Google Scholar 

  3. W.W. Chow, F. Jahnke, On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron. 37, 109–184 (2013)

    Article  ADS  Google Scholar 

  4. C. Otto, Dynamics of Quantum Dot Lasers—Effects of Optical Feedback and External Optical Injection, Springer Theses (Springer, Heidelberg, 2014)

    Book  Google Scholar 

  5. K. Lüdge, E. Schöll, Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45, 1396–1403 (2009)

    Article  Google Scholar 

  6. N. Majer, K. Lüdge, E. Schöll, Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301 (2010)

    Article  ADS  Google Scholar 

  7. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering. Appl. Phys. Lett. 101, 131107 (2012)

    Article  ADS  Google Scholar 

  8. B. Lingnau, W.W. Chow, K. Lüdge, Amplitude-phase coupling and chirp in quantum-dot lasers: influence of charge carrier scattering dynamics. Opt. Express 22, 4867–4879 (2014)

    Article  ADS  Google Scholar 

  9. F.T. Arecchi, G.L. Lippi, G.P. Puccioni, J.R. Tredicce, Deterministic chaos in laser with injected signal. Opt. Commun. 51, 308–315 (1984)

    Article  ADS  Google Scholar 

  10. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer, Berlin, 2005)

    MATH  Google Scholar 

  11. H. Zeghlache, P. Mandel, N.B. Abraham, C.O. Weiss, Phase and amplitude dynamics in the laser Lorenz model. Phys. Rev. A 38, 3128–3131 (1988)

    Article  ADS  Google Scholar 

  12. C.O. Weiss, N.B. Abraham, U. Hübner, Homoclinic and heteroclinic chaos in a single-mode laser. Phys. Rev. Lett. 61, 1587–1590 (1988)

    Article  ADS  Google Scholar 

  13. C.Z. Ning, H. Haken, Detuned lasers and the complex Lorenz equations: Subcritical and supercritical hopf bifurcations. Phys. Rev. A 41, 3826–3837 (1990)

    Article  ADS  Google Scholar 

  14. L.A. Coldren, S.W. Corzine, M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd edn., Wiley series in microwave and optical enginieering (Wiley, 2012)

    Google Scholar 

  15. E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control (Wiley, Weinheim, 2008). Second completely revised and enlarged edition

    MATH  Google Scholar 

  16. J. Mørk, B. Tromborg, J. Mark, Chaos in semiconductor lasers with optical feedback-theory and experiment. IEEE J. Quantum Electron. 28, 93–108 (1992)

    Article  ADS  Google Scholar 

  17. A.M. Levine, G.H.M. van Tartwijk, D. Lenstra, T. Erneux, Diode lasers with optical feedback: stability of the maximum gain mode. Phys. Rev. A 52, R3436–R3439 (1995)

    Article  ADS  Google Scholar 

  18. C. Otto, K. Lüdge, E. Schöll, Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios. Phys. Stat. Sol. (b) 247, 829–845 (2010)

    Google Scholar 

  19. S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995)

    Google Scholar 

  20. K. Lüdge, E. Schöll, Nonlinear dynamics of doped semiconductor quantum dot lasers. Eur. Phys. J. D 58, 167–174 (2010)

    Article  Google Scholar 

  21. R. Heitz, H. Born, F. Guffarth, O. Stier, A. Schliwa, A. Hoffmann, D. Bimberg, Existence of a phonon bottleneck for excitons in quantum dots. Phys. Rev. B 64, 241305(R) (2001)

    Article  ADS  Google Scholar 

  22. M. Kuntz, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, Y.M. Shernyakov, Spectrotemporal response of 1.3 \(\upmu \)m quantum-dot lasers. Appl. Phys. Lett. 81, 3846–3848 (2002)

    Article  ADS  Google Scholar 

  23. M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, Y. Arakawa, Theoretical study on high-speed modulation of Fabry-Pérot and distributed-feedback quantum-dot lasers: K-factor-limited bandwidth and 10 Gbit/s eye diagrams. J. Appl. Phys. 101, 013108 (2007)

    Article  ADS  Google Scholar 

  24. N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 99, 131102 (2011)

    Article  ADS  Google Scholar 

  25. T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)

    Article  ADS  Google Scholar 

  26. T.R. Nielsen, P. Gartner, M. Lorke, J. Seebeck, F. Jahnke, Coulomb scattering in nitride-based self-assembled quantum dot systems. Phys. Rev. B 72, 235311 (2005)

    Article  ADS  Google Scholar 

  27. A. Wilms, D. Breddermann, P. Mathe, Theory of direct capture from two- and three-dimensional reservoirs to quantum dot states. Phys. Stat. Sol. (c) 9, 1278 (2012)

    Article  Google Scholar 

  28. P. Borri, W. Langbein, J.M. Hvam, F. Heinrichsdorff, M.H. Mao, D. Bimberg, Ultrafast gain dynamics in InAs–InGaAs quantum-dot amplifiers. IEEE Photon. Technol. Lett. 12, 594–596 (2000)

    Article  ADS  Google Scholar 

  29. S. Dommers, V.V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Lämmlin, D. Bimberg, Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phys. Lett. 90, 033508 (2007)

    Article  ADS  Google Scholar 

  30. T. Piwonski, I. O’Driscoll, J. Houlihan, G. Huyet, R.J. Manning, A.V. Uskov, Carrier capture dynamics of InAs/GaAs quantum dots. Appl. Phys. Lett. 90, 122108 (2007)

    Article  ADS  Google Scholar 

  31. J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, M. Lämmlin, D. Bimberg, E. Malić, M. Richter, E. Schöll, A. Knorr, Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots. Phys. Rev. Lett. 101, 256803 (2008)

    Article  ADS  Google Scholar 

  32. Y. Kaptan, H. Schmeckebier, B. Herzog, D. Arsenijević, M. Kolarczik, V. Mikhelashvili, N. Owschimikow, G. Eisenstein, D. Bimberg, U. Woggon, Gain dynamics of quantum dot devices for dual-state operation. Appl. Phys. Lett. 104, 062604 (2014)

    Article  Google Scholar 

  33. K. Lüdge, E. Schöll, E.A. Viktorov, T. Erneux, Analytic approach to modulation properties of quantum dot lasers. J. Appl. Phys. 109, 103112 (2011)

    Article  ADS  Google Scholar 

  34. T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007)

    Article  ADS  Google Scholar 

  35. B. Lingnau, K. Lüdge, Analytic characterization of the dynamic regimes of quantum-dot lasers. Photonics 2, 402–413 (2015)

    Article  Google Scholar 

  36. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  37. A. Fiore, A. Markus, Differential gain and gain compression in quantum-dot lasers. IEEE J. Quantum Electron. 43, 287–294 (2007)

    Google Scholar 

  38. D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168 (2008)

    Article  Google Scholar 

  39. W.W. Chow, M. Lorke, F. Jahnke, Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers? IEEE J. Sel. Top. Quantum Electron. 17, 1349–1355 (2011)

    Article  Google Scholar 

  40. D. Bimberg, N.N. Ledentsov, M. Grundmann, F. Heinrichsdorff, Edge und surface emitting quantum dot lasers. IEDM Tech. Dig. pp. 381–384 (1997)

    Google Scholar 

  41. M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, Photon lifetime dependence of modulation efficiency and \(K\) factor im \(1.3\,\upmu \)m self-assembled \(InAs/GaAs\) quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth. Appl. Phys. Lett. 85, 4145 (2004)

    Article  ADS  Google Scholar 

  42. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs directly modulated lasers and 40 Gbs signal-regenerative amplifiers. J. Phys. D 38, 2126–2134 (2005)

    Article  ADS  Google Scholar 

  43. M. Gioannini, M. Rossetti, Time-domain traveling wave model of quantum dot DFB lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1318–1326 (2011)

    Article  Google Scholar 

  44. C. Wang, F. Grillot, J. Even, Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers. IEEE J. Quantum Electron. 48, 1144–1150 (2012)

    Article  ADS  Google Scholar 

  45. L.V. Asryan, R.A. Suris, Upper limit for the modulation bandwidth of a quantum dot laser. Appl. Phys. Lett. 96, 221112 (2010)

    Article  ADS  Google Scholar 

  46. C. Tong, D. Xu, S.F. Yoon, Carrier relaxation and modulation response of 1.3-\(\upmu \)m InAs-GaAs quantum dot lasers. J. Lightwave Technol. 27, 5442 (2009)

    Article  ADS  Google Scholar 

  47. B. Lingnau, W.W. Chow, E. Schöll, K. Lüdge, Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis. New J. Phys. 15, 093031 (2013)

    Article  ADS  Google Scholar 

  48. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J. Sel. Top. Quantum Electron. 13, 136–142 (2007)

    Google Scholar 

  49. F. Grillot, N. Dubey, Influence of the linewidth enhancement factor on the modulation response of a nanostructure-based semiconductor laser operating under external optical feedback. Proc. SPIE 7933, 79330E (2011)

    Article  ADS  Google Scholar 

  50. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982)

    Article  ADS  Google Scholar 

  51. P.M. Smowton, E.J. Pearce, H.C. Schneider, W.W. Chow, M. Hopkinson, Filamentation and linewidth enhancement factor in InGaAs quantum dot lasers. Appl. Phys. Lett. 81, 3251–3253 (2002)

    Article  ADS  Google Scholar 

  52. C. Ribbat, R.L. Sellin, I. Kaiander, F. Hopfer, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, M.V. Maximov, Complete suppression of filamentation and superior beam quality in quantum-dot lasers. Appl. Phys. Lett. 82, 952–954 (2003)

    Article  ADS  Google Scholar 

  53. S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416, 1–128 (2005)

    Article  ADS  Google Scholar 

  54. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Failure of the \(\alpha \)-factor in describing dynamical instabilities and chaos in quantum-dot lasers. Phys. Rev. E 86, 065201(R) (2012)

    Article  ADS  Google Scholar 

  55. I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter, Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 024102 (2009)

    Article  ADS  Google Scholar 

  56. N. Oliver, M.C. Soriano, D.W. Sukow, I. Fischer, Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. Opt. Lett. 36, 4632–4634 (2011)

    Article  ADS  Google Scholar 

  57. T. Harayama, S. Sunada, K. Yoshimura, J. Muramatsu, K. Arai, A. Uchida, P. Davis, Theory of fast nondeterministic physical random-bit generation with chaotic lasers. Phys. Rev. E 85, 046215 (2012)

    Article  ADS  Google Scholar 

  58. R.M. Nguimdo, G. Verschaffelt, J. Danckaert, X.J.M. Leijtens, J. Bolk, G. Van der Sande, Fast random bits generation based on a single chaotic semiconductor ring laser. Opt. Express 20, 28603–28613 (2012)

    Article  ADS  Google Scholar 

  59. V.Z. Tronciu, C.R. Mirasso, P. Colet, Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity. J. Phys. B: At. Mol. Opt. Phys. 41, 155401 (2008)

    Article  ADS  Google Scholar 

  60. A. Uchida, Optical Communication with Chaotic Lasers, Applications of Nonlinear Dynamics and Synchronization (Wiley, 2012)

    Google Scholar 

  61. L. Larger, J.M. Dudley, Nonlinear dynamics: optoelectronic chaos. Nature 465, 41–42 (2010)

    Article  ADS  Google Scholar 

  62. F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91, 040901 (R) (2015)

    Article  MathSciNet  Google Scholar 

  63. N. Wiener, Generalized harmonic analysis. Acta Math. 55, 117–258 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  64. P. Gartner, J. Seebeck, F. Jahnke, Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots. Phys. Rev. B 73, 115307 (2006)

    Article  ADS  Google Scholar 

  65. A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  66. M.W. Fleming, A. Mooradian, Fundamental line broadening of single-mode GaAlAs diode lasers. Appl. Phys. Lett. 38, 511–513 (1981)

    Article  ADS  Google Scholar 

  67. M. Lax, Classical noise. V. Noise in self-sustained oscillators. Phys. Rev. 160, 290 (1967)

    Article  ADS  Google Scholar 

  68. Z. Toffano, A. Destrez, C. Birocheau, L. Hassine, New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold. Electron. Lett. 28, 9–11 (1992)

    Article  Google Scholar 

  69. G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S. Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. (b) 201, 345–352 (2004)

    Article  ADS  Google Scholar 

  70. F. Grillot, B. Dagens, J.G. Provost, H. Su, L.F. Lester, Gain compression and above-threshold linewidth enhancement factor in 1.3\(\upmu \)m InAs/GaAs quantum-dot lasers. IEEE J. Quantum Electron. 44, 946–951 (2008)

    Article  ADS  Google Scholar 

  71. K.C. Kim, I.K. Han, J.I. Lee, T.G. Kim, Gain-dependent linewidth enhancement factor in the quantum dot structures. Nanotechnology 21, 134010 (2010)

    Article  ADS  Google Scholar 

  72. B. Kelleher, D. Goulding, G. Huyet, E.A. Viktorov, T. Erneux, S.P. Hegarty, Dimensional signature on noise-induced excitable statistics in an optically injected semiconductor laser. Phys. Rev. E 84, 026208 (2011)

    Article  ADS  Google Scholar 

  73. M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22, 1915–1921 (1986)

    Article  ADS  Google Scholar 

  74. D. Bimberg, N. Kirstaedter, N.N. Ledentsov, Z.I. Alferov, P.S. Kop’ev, V. Ustinov, InGaAs-GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997)

    Article  Google Scholar 

  75. T.C. Newell, D.J. Bossert, A. Stintz, B. Fuchs, K.J. Malloy, L.F. Lester, Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photonics Technol. Lett. 11, 1527–1529 (1999)

    Article  ADS  Google Scholar 

  76. P.K. Kondratko, S.L. Chuang, G. Walter, T. Chung, N. Holonyak, Observations of near-zero linewidth enhancement factor in a quantum-well coupled quantum-dot laser. Appl. Phys. Lett. 83, 4818 (2004)

    Article  ADS  Google Scholar 

  77. R.R. Alexander, D. Childs, H. Agarwal, K.M. Groom, H.Y. Liu, M. Hopkinson, R.A. Hogg, Zero and controllable linewidth enhancement factor in p-doped 1.3 \(\upmu \)m quantum dot lasers. Jpn. J. Appl. Phys. 46, 2421 (2007)

    Article  ADS  Google Scholar 

  78. B. Dagens, A. Markus, J. Chen, J.G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser. Electron. Lett. 41, 323–324 (2005)

    Article  Google Scholar 

  79. D.Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J.G. Provost, O. Le Gouezigou, M. Fischer, I. Krestnikov, A.R. Kovsh, A. Ramdane, Optimisation of \(\alpha \)-factor for quantum dot InAs/GaAs fabry-perot lasers emitting at \(1.3 \upmu \)m. Electron. Lett. 43, 222–224 (2007)

    Article  Google Scholar 

  80. H. Su, L.F. Lester, Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J. Phys. D: Appl. Phys. 38, 2112–2118 (2005)

    Article  ADS  Google Scholar 

  81. Z.J. Jiao, Z.G. Lu, J.R. Liu, P.J. Poole, P. Barrios, D. Poitras, G. Pakulski, J. Caballero, X.P. Zhang, Linewidth enhancement factor of InAs/InP quantum dot lasers around \(1.5\upmu \)m. Opt. Commun. 285, 4372–4375 (2012)

    Article  ADS  Google Scholar 

  82. S. Melnik, G. Huyet, A.V. Uskov, The linewidth enhancement factor \(\alpha \) of quantum dot semiconductor lasers. Opt. Express 14, 2950–2955 (2006)

    Article  ADS  Google Scholar 

  83. M. Gioannini, I. Montrosset, Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE J. Quantum Electron. 43, 941–949 (2007)

    Article  ADS  Google Scholar 

  84. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser, in Semiconductor Lasers and Laser Dynamics, vol. 8432, Proceedings of SPIE 53, ed. by V. Brussels, K. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik (2012), p. 84321J–1

    Google Scholar 

  85. G.P. Agrawal, C.M. Bowden, Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations. IEEE Photonics Technol. Lett. 5, 640–642 (1993)

    Article  ADS  Google Scholar 

  86. R. Adler, A study of locking phenomena in oscillators. Proc. IEEE 61, 1380–1385 (1973)

    Article  Google Scholar 

  87. L.E. Erickson, A. Szabo, Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity. Appl. Phys. Lett. 18, 433 (1971)

    Article  ADS  Google Scholar 

  88. Y. Liu, H.K. Liu, Y. Braiman, Injection locking of individual broad-area lasers in an integrated high-power diode array. Appl. Phys. Lett. 81, 978 (2002)

    Article  ADS  Google Scholar 

  89. X. Jin, S.L. Chuang, Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking. Solid-State Electron. 50, 1141–1149 (2006)

    Article  ADS  Google Scholar 

  90. N.B. Terry, N.A. Naderi, M. Pochet, A.J. Moscho, L.F. Lester, V. Kovanis, Bandwidth enhancement of injection-locked 1.3 \(\upmu \)m quantum-dot DFB laser. Electron. Lett. 44, 904–905 (2008)

    Article  Google Scholar 

  91. E.K. Lau, L.J. Wong, M.C. Wu, Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15, 618 (2009)

    Article  Google Scholar 

  92. E.K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C.J. Chang-Hasnain, M.C. Wu, Strong optical injection-locked semiconductor lasers demonstrating >100-Ghz resonance frequencies and 80-Ghz intrinsic bandwidths. Opt. Express 16, 6609 (2008)

    Article  ADS  Google Scholar 

  93. N.A. Naderi, M. Pochet, F. Grillot, N.B. Terry, V. Kovanis, L.F. Lester, Modeling the injection-locked behavior of a quantum dash semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 15, 563 (2009)

    Article  Google Scholar 

  94. B. Kelleher, C. Bonatto, G. Huyet, S.P. Hegarty, Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)

    Article  ADS  Google Scholar 

  95. J.R. Tredicce, F.T. Arecchi, G.L. Lippi, G.P. Puccioni, Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2, 173–183 (1985)

    Article  ADS  Google Scholar 

  96. T.B. Simpson, J.M. Liu, A. Gavrielides, V. Kovanis, P.M. Alsing, Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett. 64, 3539–3541 (1994)

    Article  ADS  Google Scholar 

  97. A. Gavrielides, V. Kovanis, P.M. Varangis, T. Erneux, G. Lythe, Coexisting periodic attractors in injection-locked diode lasers. Quantum Semiclass. Opt. 9, 785 (1997)

    Article  ADS  Google Scholar 

  98. D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98, 153903 (2007)

    Article  ADS  Google Scholar 

  99. S. Osborne, K. Buckley, A. Amann, S. O’Brien, All-optical memory based on the injection locking bistability of a two-color laser diode. Opt. Express 17, 6293–6300 (2009)

    Article  ADS  Google Scholar 

  100. S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback. Semicond. Sci. Technol. 27, 094001 (2012)

    Article  ADS  Google Scholar 

  101. A. Hurtado, I.D. Henning, M.J. Adams, L.F. Lester, Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser. IEEE Photonics J. 5, 5900107 (2013)

    Article  Google Scholar 

  102. V.I. Arnold, Small denominators i, mappings of the circumference onto itself. Am. Math. Soc. Transl. 46, 213–284 (1965)

    Article  MATH  Google Scholar 

  103. A. Murakami, K.A. Shore, Analogy between optically-driven injection-locked laser diodes and driven damped linear oscillators. Phys. Rev. A 73, 043804–043804–9 (2005)

    Article  ADS  Google Scholar 

  104. B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, D.Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, Excitable phase slips in an injection-locked single-mode quantum-dot laser. Opt. Lett. 34, 440–442 (2009)

    Article  ADS  Google Scholar 

  105. D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, Optical injection enables coherence resonance in quantum-dot lasers. Europhys. Lett. 103, 14002–p1–14002–p6 (2013)

    Article  Google Scholar 

  106. E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blum, J.J.H.B. Schleipen, H. de Waardt, Optical neuron by use of a laser diode with injection seeding and external optical feedback. IEEE Trans. Neural Netw. 11, 988–996 (2000)

    Article  Google Scholar 

  107. B. Krauskopf, W.A. van der Graaf, D. Lenstra, Bifurcations of relaxation oscillations in an optically injected diode laser. J. Opt. Soc. Am. B 9, 797 (1997)

    MathSciNet  Google Scholar 

  108. M.G. Zimmermann, M.A. Natiello, H.G. Solari, Shilnikov-saddle-node interaction near a codimension 2 bifurcation: laser with injected signal. Phys. D 109, 293–314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  109. M. Nizette, T. Erneux, A. Gavrielides, V. Kovanis, Averaged equations for injection locked semiconductor lasers. Phys. D 161, 220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  110. J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, T. Erneux, Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Phys. Rev. Lett. 107, 104101 (2011)

    Article  ADS  Google Scholar 

  111. B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, G. Huyet, Bounded phase phenomena in the optically injected laser. Phys. Rev. E 85, 046212 (2012)

    Article  ADS  Google Scholar 

  112. M. Romanelli, L. Wang, M. Brunel, M. Vallet, Measuring the universal synchronization properties of driven oscillators across a hopf instability. Opt. Express 22, 7364 (2014)

    Article  ADS  Google Scholar 

  113. D. Bimberg, Semiconductor Nanostructures (Springer, Berlin, 2008)

    Book  Google Scholar 

  114. J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers—impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)

    Article  ADS  Google Scholar 

  115. B. Krauskopf, H.M. Osinga, J. Galán-Vioque, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems (Springer, New York, 2007)

    Book  MATH  Google Scholar 

  116. K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, Large signal response of semiconductor quantum-dot lasers. IEEE J. Quantum Electron. 46, 1755–1762 (2010)

    Article  ADS  Google Scholar 

  117. M. Gioannini, Ground-state quenching in two-state lasing quantum dot lasers. J. Appl. Phys. 111, 043108 (2012)

    Article  ADS  Google Scholar 

  118. E.J. Doedel, H.B. Keller, J.P. Kervenez, Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 493–520 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  119. E.J. Doedel, B.E. Oldeman, Auto-07P: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2009)

    Google Scholar 

  120. P. Besnard, B. Meziane, G.M. Stephan, Feedback phenomena in a semiconductor laser induced by distant reflectors. IEEE J. Quantum Electron. 29, 1271–1284 (1993)

    Article  ADS  Google Scholar 

  121. T. Heil, I. Fischer, W. Elsäßer, A. Gavrielides, Dynamics of semiconductor lasers subject to delayed optical feedback: The short cavity regime. Phys. Rev. Lett. 87, 243901 (2001)

    Article  ADS  Google Scholar 

  122. D.M. Kane, K.A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, Weinheim, 2005)

    Google Scholar 

  123. M.C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)

    Article  ADS  Google Scholar 

  124. B. Kim, N. Li, A. Locquet, D.S. Citrin, Experimental bifurcation-cascade diagram of an external-cavity semiconductor laser. Opt. Express 22, 2348 (2014)

    Article  ADS  Google Scholar 

  125. Y. Cho, M. Umeda, Chaos in laser oscillations with delayed feedback; numerical analysis and observation using semiconductor laser. J. Opt. Soc. Am. B 1, 497–498 (1984)

    ADS  Google Scholar 

  126. C.H. Henry, R.F. Kazarinov, Instability of semiconductor lasers due to optical feedback from distant reflectors. IEEE J. Quantum Electron. 22, 294–301 (1986)

    Article  ADS  Google Scholar 

  127. N. Schunk, K. Petermann, Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron. 24, 1242–1247 (1988)

    Article  ADS  Google Scholar 

  128. G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22, 43–122 (1998)

    Article  ADS  Google Scholar 

  129. J. Ohtsubo, Feedback induced instability and chaos in semiconductor lasers and their applications. Opt. Rev. 6, 1–15 (1999)

    Article  Google Scholar 

  130. A. Ahlborn, U. Parlitz, Laser stabilization with multiple-delay feedback control. Opt. Lett. 31, 465–467 (2006)

    Article  ADS  Google Scholar 

  131. S. Schikora, P. Hövel, H.J. Wünsche, E. Schöll, F. Henneberger, All-optical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett. 97, 213902 (2006)

    Article  ADS  Google Scholar 

  132. T. Dahms, P. Hövel, E. Schöll, Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Phys. Rev. E 78, 056213 (2008)

    Article  ADS  Google Scholar 

  133. E. Schöll, P. Hövel, V. Flunkert, M.A. Dahlem, Time-delayed feedback control: from simple models to lasers and neural systems, in Complex Time-Delay Systems: Theory and Applications, ed. by F.M. Atay (Springer, Berlin, 2010), pp. 85–150

    Google Scholar 

  134. B. Dahmani, L. Hollberg, R. Drullinger, Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12, 876 (1987)

    Article  ADS  Google Scholar 

  135. P. Spano, S. Piazzolla, M. Tamburrini, Theory of noise in semiconductor-lasers in the presence of optical feedback. IEEE J. Quantum Electron. 20, 350–357 (1984)

    Article  ADS  Google Scholar 

  136. V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007)

    Article  ADS  Google Scholar 

  137. K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G.H. Duan, G. Aubin, A. Ramdane, Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback. Appl. Phys. Lett. 95, 131111 (2009)

    Article  ADS  Google Scholar 

  138. C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96, 051118 (2010)

    Article  ADS  Google Scholar 

  139. J.P. Goedgebuer, L. Larger, H. Porte, Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode. Phys. Rev. Lett. 80, 2249–2252 (1998)

    Article  ADS  Google Scholar 

  140. H.D.I. Abarbanel, M.B. Kennel, L. Illing, S. Tang, H.F. Chen, J.M. Liu, Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Electron. 37, 1301–1311 (2001)

    Article  ADS  Google Scholar 

  141. G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, \(1.3 \mu m\) range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26, 014006 (2011)

    Article  ADS  Google Scholar 

  142. C. Otto, K. Lüdge, A.G. Vladimirov, M. Wolfrum, E. Schöll, Delay induced dynamics and jitter reduction of passively mode-locked semiconductor laser subject to optical feedback. New J. Phys. 14, 113033 (2012)

    Article  ADS  Google Scholar 

  143. D. Arsenijević, M. Kleinert, D. Bimberg, Phase noise and jitter reduction by optical feedback on passively mode-locked quantum-dot lasers. Appl. Phys. Lett. 103, 231101 (2013)

    Article  ADS  Google Scholar 

  144. C. Otto, L.C. Jaurigue, E. Schöll, K. Lüdge, Optimization of timing jitter reduction by optical feedback for a passively mode-locked laser. IEEE Photonics J. 6, 1501814 (2014)

    Article  Google Scholar 

  145. M.T. Hill, E.E. Frietman, H. de Waardt, G.-D. Khoe, H.J.S. Dorren, All fiber-optic neural network using coupled SOA based ring lasers. IEEE Trans. Neural Netw. 13, 1504–1513 (2002)

    Article  Google Scholar 

  146. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)

    Article  ADS  Google Scholar 

  147. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012)

    Article  ADS  Google Scholar 

  148. R.M. Nguimdo, G. Verschaffelt, J. Danckaert, G. Van der Sande, Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Opt. Express 22, 8672–8686 (2014)

    Article  ADS  Google Scholar 

  149. N.N. Rozanov, Kinetics of a solid-state laser with an additional moving mirror. Sov. J. Quantum Electron. 4, 1191 (1975)

    Article  ADS  Google Scholar 

  150. R. Lang, K. Kobayashi, External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980)

    Article  ADS  Google Scholar 

  151. T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)

    MATH  Google Scholar 

  152. T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, A. Gavrielides, Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms. Phys. Rev. E 67, 066214 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  153. H. Erzgräber, D. Lenstra, B. Krauskopf, A.P.A. Fischer, G. Vemuri, Feedback phase sensitivity of a semiconductor laser subject to filtered optical feedback: experiment and theory. Phys. Rev. E 76, 026212 (2007)

    Article  ADS  Google Scholar 

  154. D. O’Brien, S.P. Hegarty, G. Huyet, A.V. Uskov, Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt. Lett. 29, 1072 (2004)

    Article  ADS  Google Scholar 

  155. B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)

    Article  ADS  MATH  Google Scholar 

  156. C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback. Int. J. Bifurc. Chaos 22, 1250246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  157. R. Lang, M.O. Scully, W.E. Lamb Jr, Why is the laser line so narrow? a theory of single-quasimode laser operation. Phys. Rev. A 7, 1788–1797 (1973)

    Article  ADS  Google Scholar 

  158. S.A. Shakir, W.W. Chow, Semiclassical theory of coupled lasers. Phys. Rev. A 32, 983–991 (1985)

    Article  ADS  Google Scholar 

  159. M.H. Rose, M. Lindberg, W.W. Chow, S.W. Koch, M. Sargent, Composite-cavity-mode approach to single-mode semiconductor-laser feedback instabilities. Phys. Rev. A 46, 603–611 (1992)

    Article  ADS  Google Scholar 

  160. S. Tarucha, T. Honda, T. Saku, Reduction of quantized conductance at low temperatures observed in 2 to 10 \(\upmu \)m-long quantum wires. Solid State Commun. 94, 413 (1995)

    Article  ADS  Google Scholar 

  161. D. Lenstra, Statistical-theory of the multistable external-feedback laser. Opt. Commun. 81, 209–214 (1991)

    Article  ADS  Google Scholar 

  162. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Schöll, Bubbling in delay-coupled lasers. Phys. Rev. E 79, 065201 (R) (2009)

    Article  ADS  Google Scholar 

  163. A. Hohl, A. Gavrielides, Bifurcation cascade in a semiconductor laser subject to optical feedback. Phys. Rev. Lett. 82, 1148–1151 (1999)

    Article  ADS  Google Scholar 

  164. D. Pieroux, T. Erneux, B. Haegeman, K. Engelborghs, D. Roose, Bridges of periodic solutions and tori in semiconductor lasers subject to delay. Phys. Rev. Lett. 87, 193901 (2001)

    Article  ADS  Google Scholar 

  165. C. Harder, K. Vahala, A. Yariv, Measurement of the linewidth enhancement factor alpha of semiconductor lasers. Appl. Phys. Lett. 42, 328–330 (1983)

    Article  ADS  Google Scholar 

  166. S. Gerhard, C. Schilling, F. Gerschütz, M. Fischer, J. Koeth, I. Krestnikov, A.R. Kovsh, M. Kamp, S. Höfling, A. Forchel, Frequency-dependent linewidth enhancement factor of quantum-dot lasers. IEEE Photonics Technol. Lett. 20, 1736–1738 (2008)

    Article  ADS  Google Scholar 

  167. A. Martinez, K. Merghem, L. Ferlazzo, C. Dupuis, A. Ramdane, J.G. Provost, B. Dagens, O. Le Gouezigou, O. Gauthier-Lafaye, Static and dynamic measurements of the \(\alpha \)-factor of five-quantum-dot-layer single-mode lasers emitting at 1.3\(\upmu \)m on GaAs. Appl. Phys. Lett. 86, 211115 (2005)

    Article  ADS  Google Scholar 

  168. T. Fordell, A.M. Lindberg, Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser. IEEE J. Quantum Electron. 43, 6–15 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Lingnau .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lingnau, B. (2015). Quantum-Dot Laser Dynamics. In: Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-25805-8_3

Download citation

Publish with us

Policies and ethics