Skip to main content
  • 727 Accesses

Abstract

In previous chapters we have assumed that a trajectory defined over the full task duration is available, however this is not the case in more natural, everyday activities such as eating, washing or manipulating objects. In this chapter we extend the problem definition to encompass fully functional motion, and develop ILC control algorithms which enforce tracking of these extended task representations. The framework is then illustrated by comparing model outputs with experimental data collected from unimpaired subjects performing common activities of daily living. This model description is shown to accurately represent natural movements, and demonstrates that a reference trajectory defined over the entire task duration is no longer required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.T. Freeman, Constrained point-to-point iterative learning control with experimental verification. Control Eng. Pract. 20(5), 489–498 (2012)

    Article  MathSciNet  Google Scholar 

  2. D.H. Owens, J.J. Hätönen, S. Daley, Robust monotone gradient-based discrete-time iterative learning control. Int. J. Robust Nonlinear Control 19, 634–661 (2009)

    Article  MATH  Google Scholar 

  3. D.H. Owens, C.T. Freeman, T. Van Dinh, Norm-optimal iterative learning control with intermediate point weighting: theory, algorithms, and experimental evaluation. IEEE Trans. Control Syst. Technol. 21(3), 999–1007 (2012)

    Article  Google Scholar 

  4. D.H. Owens, C.T. Freeman, B. Chu, An inverse model approach to multivariable norm optimal iterative learning control with auxiliary optimization. Int. J. Control 87(8), 1646–1671 (2014)

    Article  MathSciNet  Google Scholar 

  5. D.H. Owens, C.T. Freeman, B. Chu, Multivariable norm optimal iterative learning control with auxiliary optimization. Int. J. Control 86(6), 1026–1045 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Chu, C.T. Freeman, D.H. Owens, A novel design framework for point-to-point ilc using successive projection. EEE Trans. Control Syst. Technol. 23(3),1156–1163 (2015)

    Google Scholar 

  7. S. Zoia, E. Pezzetta, L. Blason, A. Scabar, M. Carrozzi, M. Bulgheroni, U. Castiello, A comparison of the reach-to-grasp movement between children and adults: a kinematic study. Dev. Neuropsychol. 30(2), 719–738 (2006)

    Article  Google Scholar 

  8. A. Viau, A.G. Feldman, B.J. McFadyen, M.F. Levin, Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J. Neuroeng. Rehabil. 1(11), 1–7 (2004)

    Google Scholar 

  9. C. Wu, C.A. Trombly, K. Lin, L. Tickle-Degnen, A kinematic study of contextual effects on reaching performance in persons with and without stroke: influences of object availability. Arch. Phys. Med. Rehabil. 81(1), 95–101 (2000)

    Article  Google Scholar 

  10. S.B. Thies, P.A. Tresadern, L.P. Kenney, J. Smith, D. Howard, J.Y. Goulermas, C. Smith, J. Rigby, Movement variability in stroke patients and controls performing two upper limb functional tasks: a new assessment methodology. J. Neuroeng. Rehabil. 6, 2 (2009)

    Google Scholar 

  11. M.C. Cirstea, M.F. Levin, Compensatory strategies for reaching in stroke. Brain 123(5), 940–953 (2000)

    Article  Google Scholar 

  12. W. Tippett, L. Alexander, M. Rizkalla, L. Sergio, S. Black, True functional ability of chronic stroke patients. J. Neuroeng. Rehabil. 10, 1–13 (2013)

    Article  Google Scholar 

  13. D.M. Wolpert, Z. Ghahramani, J.R. Flanagan, Perspectives and problems in motor learning. TRENDS Cogn. Sci. 5(11), 487–494 (2001)

    Article  Google Scholar 

  14. V.S. Huang, J.W. Krakauer, Robotic neurorehabilitation: a computational motor learning perspective. J. Neuroeng. Rehabil. 6, 5 (2009)

    Google Scholar 

  15. T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)

    Google Scholar 

  16. Y. Uno, M. Kawato, R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol. Cybern. 61(2), 89–101 (1989)

    Article  Google Scholar 

  17. C.M. Harris, D.M. Wolpert, Signal-dependent noise determines motor planning. Nature 20(394(6695), 780–784 (1998)

    Google Scholar 

  18. K. Ohta, M.M. Svinin, Z. Luo, S. Hosoe, Rl Laboissiere, Optimal trajectory formation of constrained human arm reaching movements. Biol. Cybern. 91(1), 23–36 (2004)

    Article  MATH  Google Scholar 

  19. C.T. Freeman, T. Exell, K.L. Meadmore, E. Hallewell, A.-M. Hughes, Computational models of upper limb motion during functional reaching tasks for application in FES based stroke rehabilitation. Biomed. Eng. J. 60(3), 179–191 (2015)

    Google Scholar 

  20. V.S. Hedna, A.N. Bodhit, S. Ansari, A.D. Falchook, L. Stead, K.M. Heilman, M.F. Waters, Hemispheric dfferences in ischemic stroke: is left-hemisphere stroke more common? J. Clin. Neurol. 9(2), 97–102 (2013)

    Article  Google Scholar 

  21. M. Warner, P. Chappell, M. Stokes, Measuring scapular kinematics during arm lowering using the acromion marker cluster. Hum. Mov. Sci. 31(2), 386–396 (2012)

    Article  Google Scholar 

  22. C. Meskers, F. van der Helm, L. Rozendaal, P. Rozing, In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J. Biomech. 31(1), 93–96 (1998)

    Google Scholar 

  23. G. Wu, F. van der Helm, H. Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels, A. Karduna, K. McQuade, X. Wang, F. Werner, B. Buchholz, Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - part ii: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Freeman .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freeman, C. (2016). Constrained ILC for Human Motor Control. In: Control System Design for Electrical Stimulation in Upper Limb Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-25706-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25706-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25704-4

  • Online ISBN: 978-3-319-25706-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics