Skip to main content
  • 752 Accesses

Abstract

In this chapter we augment the control structure to further improve tracking accuracy. To do this we exploit the inherently repetitive nature of the rehabilitation process, which involves neurologically impaired participants repeatedly performing tracking movements with their affected arm, with a rest period in between attempts during which their arm is returned to the starting position. We will use the data collected over previous task attempts to adjust the control action in order to compensate for tracking error on the subsequent task attempt. The analysis of the previous chapter is then extended to provide precise robust performance bounds involving the plant modeling uncertainty existing in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Bristow, M. Tharayil, A.G. Alleyne, A survey of iterative learning control a learning-based method for high-performance tracking control. IEEE Control Syst. Mag. 26(3), 96–114 (2006)

    Article  Google Scholar 

  2. H.S. Ahn, Y. Chen, K.L. Moore, Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 37(6), 1099–1121 (2007)

    Article  Google Scholar 

  3. T. Seel, T. Schauer, J. Raisch, Iterative learning control for variable pass length systems, in IFAC World Congress (2011), pp. 4880–4885

    Google Scholar 

  4. H. Nahrstaedt, T. Schauer, S. Hesse, J. Raisch, Iterative learning control of a gait neuroprosthesis. Automatisierungs 56(9), 494–501 (2008)

    Article  Google Scholar 

  5. J. Bae, M. Tomizuka, A gait rehabilitation strategy inspired by an iterative learning algorithm. Mechatronics 22(2), 213–221 (2012)

    Article  Google Scholar 

  6. P.M. Aubin, M.S. Cowley, W.R. Ledoux, Gait simulation via a 6-DOF parallel robot with iterative learning control. IEEE Trans. Biomed. Eng. 55, 1237–1240 (2008)

    Article  Google Scholar 

  7. A.M. Hughes, C.T. Freeman, J.H. Burridge, P.H. Chappell, P. Lewin, E. Rogers, Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. J. Neurorehabilitation Neural Repair 23(6), 559–568 (2009)

    Article  Google Scholar 

  8. C.T. Freeman, A.M. Hughes, J.H. Burridge, P.H. Chappell, P.L. Lewin, E. Rogers, A model of the upper extremity using FES for stroke rehabilitation. ASME J. Biomech. Eng. 131(3), 031006-1–031006-10 (2009)

    Article  Google Scholar 

  9. C.T. Freeman, A.M. Hughes, J.H. Burridge, P.H. Chappell, P.L. Lewin, E. Rogers, Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng. Pract. 17(3), 368–381 (2009)

    Article  Google Scholar 

  10. C.T. Freeman, D. Tong, K. Meadmore, Z. Cai, E. Rogers, A.M. Hughes, J.H. Burridge, Phase-lead iterative learning control algorithms for functional electrical stimulation based stroke rehabilitation. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 225(6), 850–859 (2011)

    Google Scholar 

  11. K.L. Meadmore, A.-M. Hughes, C.T. Freeman, Z. Cai, D. Tong, J.H. Burridge, E. Rogers, Functional electrical stimulation mediated by iterative learning control and \(3d\) robotics reduces motor impairment in chronic stroke. J. Neuroeng. Rehabil. 32(9), 1–11 (2012)

    Google Scholar 

  12. K.L. Meadmore, T. Exell, E. Hallewell, A.-M. Hughes, C.T. Freeman, M. Kutlu, V. Benson, E. Rogers, J.H. Burridge, The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study. J. NeuroEng. Rehabil. 11, 105 (2014)

    Google Scholar 

  13. P.J. Olver, Applied mathematics lecture notes. Technical report (2012)

    Google Scholar 

  14. J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, London, 1970)

    MATH  Google Scholar 

  15. N. Amann, D.H. Owens, E. Rogers, Iterative learning control using optimal feedback and feedforward actions. Int. J. Control 65, 277–293 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Gunnarsson, M. Norrlof, On the design of ILC algorithms using optimization. Automatica 37(12), 2011–2016 (2001)

    Article  MATH  Google Scholar 

  17. J.H. Lee, K.S. Lee, W.C. Kim, Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica 36, 641–657 (2000)

    Article  MATH  Google Scholar 

  18. K.L. Barton, A.G. Alleyne, A norm optimal approach to time-varying ILC with application to a multi-axis robotic testbed. IEEE Trans. Control Syst. Technol. 19(1), 166–180 (2011)

    Article  Google Scholar 

  19. T. Lin, D.H. Owens, J.J. Hatonen, Newton method based iterative learning control for discrete non-linear systems. Int. J. Control 79(10), 1263–1276 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. C.T. Freeman, Constrained point-to-point iterative learning control with experimental verification. Control Eng. Pract. 20(5), 489–498 (2012)

    Article  MathSciNet  Google Scholar 

  21. D.H. Owens, J.J. Hätönen, S. Daley, Robust monotone gradient-based discrete-time iterative learning control. Int. J. Robust Nonlinear Control 19, 634–661 (2009)

    Article  MATH  Google Scholar 

  22. N. Amann, D.H. Owens, E. Rogers, Iterative learning control for discrete-time systems with exponential rate of convergence. IEE Proc. Control Theory Appl. 143(2), 217–224 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Bradley, The robust stability of iterative learning control. Ph.D. thesis, Electronics and Computer Science, University of Southampton (2010)

    Google Scholar 

  24. T.T. Georgiou, M.C. Smith, Robustness analysis of nonlinear feedback systems: an input-output approach. IEEE Trans. Autom. Control 42(9), 1200–1221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Freeman .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freeman, C. (2016). Iterative Learning Control Design. In: Control System Design for Electrical Stimulation in Upper Limb Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-25706-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25706-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25704-4

  • Online ISBN: 978-3-319-25706-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics