Skip to main content

Neuroimaging as a Research Tool in Human Essential Hypertension

  • Chapter
  • First Online:
Hypertension and the Brain as an End-Organ Target

Abstract

Essential hypertension is a chronic vascular disease that affects a significant portion of the population, with approximately half of adults over the age of 55 reporting high systolic and/or diastolic blood pressure. Increased systemic blood pressure leads to a decline in cerebrovascular reserve capacity and degenerative changes in the cerebrovascular walls which, in turn, can lead to brain infarcts, hemorrhages, and white matter damage. There is growing epidemiological evidence that high blood pressure and its subsequent cerebrovascular consequences are linked to cognitive decline and dementia. In order to better understand, and develop specific treatments for, hypertension-related cerebral dysfunction, it is important that research tools are developed to accurately characterize the structural and functional changes occurring in the human hypertensive brain. This chapter outlines the most commonly used neuroimaging modalities in the context of their usefulness as research tools in the investigation of the known and proposed effects of hypertension on the human brain. Particular emphasis is given to the various emerging magnetic resonance imaging techniques which are continually improving in both spacial and temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, Havlik RJ. Midlife blood pressure and dementia: the Honolulu–Asia aging study. Neurobiol Aging. 2000;21:49–55.

    Article  CAS  PubMed  Google Scholar 

  2. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, Trenkwalder P, Zanchetti A, Group SS, et al. The study on cognition and prognosis in the elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21:875–86.

    Article  CAS  PubMed  Google Scholar 

  3. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, Waldman A, Walton I, Poulter R, Ma S, Comsa M, Burch L, Fletcher A, Bulpitt C. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008;7:683–9.

    Article  CAS  PubMed  Google Scholar 

  4. Skoog I. The relationship between blood pressure and dementia: a review. Biomed Pharmacother. 1997;51:367–75.

    Article  CAS  PubMed  Google Scholar 

  5. Harrington F, Saxby BK, McKeith IG, Wesnes K, Ford GA. Cognitive performance in hypertensive and normotensive older subjects. Hypertension. 2000;36:1079–82.

    Article  CAS  PubMed  Google Scholar 

  6. Skoog I, Lithell H, Hansson L, Elmfeldt D, Hofman A, Olofsson B, Trenkwalder P, Zanchetti A. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: Study on COgnition and Prognosis in the Elderly (SCOPE). Am J Hypertens. 2005;18:1052–9.

    Article  CAS  PubMed  Google Scholar 

  7. The PROGRESS Collaborative Group. EFfects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163:1069–75.

    Article  Google Scholar 

  8. Rubin GD, Leipsic J, Schoepf UJ, Fleischmann D, Napel S. CT angiography after 20 years: a transformation in cardiovascular disease characterization continues to advance. Radiology. 2014;271:633–52.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hatazawa J, Yamaguchi T, Ito M, Yamaura H, Matsuzawa T. Association of hypertension with increased atrophy of brain matter in the elderly. J Am Geriatr Soc. 1984;32:370–4.

    Article  CAS  PubMed  Google Scholar 

  10. Janota I. Dementia, deep white matter damage and hypertension: ‘Binswanger’s disease’. Psychol Med. 1981;11:39–48.

    Article  CAS  PubMed  Google Scholar 

  11. Yamano S, Sawai F, Yamamoto Y, Sawai N, Minami S, Akai M, Nomura K, Takaoka M, Fukui R, Dohi K. Relationship between brain atrophy estimated by a longitudinal computed tomography study and blood pressure control in patients with essential hypertension. Jpn Circ J. 1999;63:79–84.

    Article  CAS  PubMed  Google Scholar 

  12. Napel S, Marks MP, Rubin GD, Dake MD, McDonnell CH, Song SM, Enzmann DR, Jeffrey RB. CT angiography with spiral CT and maximum intensity projection. Radiology. 1992;185:607–10.

    Article  CAS  PubMed  Google Scholar 

  13. Rubin GD, Dake MD, Napel S, Jeffrey RB, McDonnell CH, Sommer FG, Wexler L, Williams DM. Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology. 1994;190:181–9.

    Article  CAS  PubMed  Google Scholar 

  14. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  15. Oldendorf W. Clinical brain imaging: principles and applications. 1st ed. Philadelphia: F. A. Davis; 1992.

    Google Scholar 

  16. Ficzere A, Csiba L. Comparison of different methods evaluating the functional and structural abnormalities in hypertension. Eur Neurol. 2002;48:71–9.

    Article  PubMed  Google Scholar 

  17. Yonekura Y, Nishizawa S, Mukai T, Fujita T, Fukuyama H, Ishikawa M, Kikuchi H, Konishi J, Andersen AR, Lassen NA. SPECT with 99mTc]-d, l-hexamethyl-propylene amine oxime (HM-PAO) compared with regional cerebral blood flow measured by PET: effects of linearization. J Cereb Blood Flow Metab. 1988;8:S82–9.

    Article  CAS  PubMed  Google Scholar 

  18. Dahl A, Lindegaard K-F, Russell D, Nyberg-Hansen R, Rootwelt K, Sorteberg W, Nornes H. A comparison of transcranial Doppler and cerebral blood flow studies to assess cerebral vasoreactivity. Stroke. 1992;23:15–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sorteberg W, Lindegaard K-F, Rootwelt K, Dahl A, Nyberg-Hansen R, Russell D, Nornes H. Effect of acetazolamide on cerebral artery blood velocity and regional cerebral blood flow in normal subjects. Acta Neurochir. 1989;97:139–45.

    Article  CAS  PubMed  Google Scholar 

  20. Knop J, Thie A, Fuchs C, Siepmann G, Zeumer H. 99mTc-HMPAO-SPECT with acetazolamide challenge to detect hemodynamic compromise in occlusive cerebrovascular disease. Stroke. 1992;23:1733–42.

    Article  CAS  PubMed  Google Scholar 

  21. Matsuda H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med. 2007;48:1289–300.

    Article  PubMed  Google Scholar 

  22. Iida H, Nakagawara J, Hayashida K, Fukushima K, Watabe H, Koshino K, Zeniya T, Eberl S. Multicenter evaluation of a standardized protocol for rest and Acetazolamide cerebral blood flow assessment using a quantitative SPECT reconstruction program and split-dose 123I-iodoamphetamine. J Nucl Med. 2010;51:1624–31.

    Article  PubMed  Google Scholar 

  23. Farid K, Petras S, Ducasse V, Chokron S, Helft G, Blacher J, Caillat-Vigneron N. Brain perfusion SPECT imaging and acetazolamide challenge in vascular cognitive impairment. Nucl Med Commun. 2012;33:571–80.

    Article  PubMed  Google Scholar 

  24. Therapeutics and Technology Assessment Subcommittee. Assessment: Brain SPECT. American Academy of Neurology 1995.

    Google Scholar 

  25. Raichle ME. Circulatory and metabolic correlates of brain function in normal humans [Online]. Comprehensive Physiology. http://onlinelibrary.wiley.com/doi/10.1002/cphy.cp010516/full. Accessed 30 Oct 2014.

    Google Scholar 

  26. Beason-Held LL, Moghekar A, Zonderman AB, Kraut MA, Resnick SM. Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke. 2007;38:1766–73.

    Article  PubMed  Google Scholar 

  27. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Abnormal regional cerebral blood flow in cognitively normal elderly subjects with hypertension. Stroke. 2008;39:349–54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mentis MJ, Salerno J, Horwitz B, Grady C, Schapiro MB, Murphy DG, Rapoport SI. Reduction of functional neuronal connectivity in long-term treated hypertension. Stroke. 1994;25:601–7.

    Article  CAS  PubMed  Google Scholar 

  29. Fujishima M, Ibayashi S, Fujii K, Mori S. Cerebral blood flow and brain function in hypertension. Hypertens Res. 1995;18:111–7.

    Article  CAS  PubMed  Google Scholar 

  30. Fujii K, Sadoshima S, Okada Y, Yao H, Kuwabara Y, Ichiya Y, Fujishima M. Cerebral blood flow and metabolism in normotensive and hypertensive patients with transient neurologic deficits. Stroke. 1990;21:283–90.

    Article  CAS  PubMed  Google Scholar 

  31. Jennings JR, Muldoon MF, Ryan C, Price JC, Greer P, Sutton-Tyrrell K, van der Veen FM, Meltzer CC. Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology. 2005;64:1358–65.

    Article  CAS  PubMed  Google Scholar 

  32. Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 2009;112:769–74.

    Google Scholar 

  33. Malatino LS, Bellofiore S, Costa MP, Manto GL, Finocchiaro F, Maria GUD. Cerebral blood flow velocity after hyperventilation-induced vasoconstriction in hypertensive patients. Stroke. 1992;23:1728–32.

    Article  CAS  PubMed  Google Scholar 

  34. Sugimori H, Ibayashi S, Irie K, Ooboshi H, Nagao T, Fujii K, Sadoshima S, Fujishima M. Cerebral hemodynamics in hypertensive patients compared with normotensive volunteers. A transcranial Doppler study. Stroke. 1994;25:1384–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lipsitz LA, Mukai S, Hamner J, Gagnon M, Babikian V. Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension. Stroke. 2000;31:1897–903.

    Article  CAS  PubMed  Google Scholar 

  36. Ficzere A, Valikovics A, Fülesdi B, Juhász A, Czuriga I, Csiba L. Cerebrovascular reactivity in hypertensive patients: a transcranial Doppler study. J Clin Ultrasound. 1997;25:383–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med. 1974;67:447–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cho SJ, Sohn YH, Kim GW, Kim J-S. Blood flow velocity changes in the middle cerebral artery as an index of the chronicity of hypertension. J Neurol Sci. 1997;150:77–80.

    Article  CAS  PubMed  Google Scholar 

  39. Sierra C, Sierra ADL, Chamorro Á, Larrousse M, Domènech M, Coca A. Cerebral hemodynamics and silent cerebral white matter lesions in middle-aged essential hypertensive patients. Blood Press. 2004;13:304–9.

    Article  PubMed  Google Scholar 

  40. Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013.

    Google Scholar 

  41. Purkayastha S, Sorond F. Transcranial Doppler ultrasound: technique and application. Semin Neurol. 2012;32:411–20.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rusinek H, Mourino MR, Firooznia H, Weinreb JC, Chase NE. Volumetric rendering of MR images. Radiology. 1989;171:269–72.

    Article  CAS  PubMed  Google Scholar 

  43. Filipek PA, Kennedy DN, Caviness VS. Volumetric analyses of central nervous system neoplasm based on MRI. Pediatr Neurol. 1991;7:347–51.

    Article  CAS  PubMed  Google Scholar 

  44. Tisserand DJ, Pruessner JC, Sanz Arigita EJ, van Boxtel MPJ, Evans AC, Jolles J, Uylings HBM. Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage. 2002;17:657–69.

    Article  PubMed  Google Scholar 

  45. Fazekas F, Kleinert R, Offenbacher H, Payer F, Schmidt R, Kleinert G, Radner H, Lechner H. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. Am J Neuroradiol. 1991;12:915–21.

    CAS  PubMed  Google Scholar 

  46. Ott BR, Faberman RS, Noto RB, Rogg JM, Hough TJ, Tung GA, Spencer PK. A SPECT imaging study of MRI white matter hyperintensity in patients with degenerative dementia. Dement Geriatr Cogn Disord. 1997;8:348–54.

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt R, Fazekas F, Offenbacher H, et al. Magnetic resonance imaging white matter lesions and cognitive impairment in hypertensive individuals. Arch Neurol. 1991;48:417–20.

    Article  CAS  PubMed  Google Scholar 

  48. Firbank MJ, Wiseman RM, Burton EJ, Saxby BK, O’Brien JT, Ford GA. Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure: brain atrophy, WMH change and blood pressure. J Neurol. 2007;254:713–21.

    Article  PubMed  Google Scholar 

  49. Korf ESC, Van Straaten ECW, De Leeuw F-E, Van Der Flier WM, Barkhof F, Pantoni L, Basile AM, Inzitari D, Erkinjuntti T, Wahlund L-O, Rostrup E, Schmidt R, Fazekas F, Scheltens P, on behalf of the LADIS Study Group. Diabetes mellitus, hypertension and medial temporal lobe atrophy: the LADIS study. Diabet Med. 2007;24:166–71.

    Article  CAS  PubMed  Google Scholar 

  50. Wells AM, Janes AC, Liu X, Deschepper CF, Kaufman MJ, Kantak KM. Medial temporal lobe functioning and structure in the spontaneously hypertensive rat: comparison with Wistar-Kyoto normotensive and Wistar-Kyoto hypertensive strains. Hippocampus. 2009;20(6):787–97. doi:10.1002/hipo.20681.

    Google Scholar 

  51. ElSankari S, Balédent O, van Pesch V, Sindic C, de Broqueville Q, Duprez T. Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab. 2013;33:1314–21.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Amin-Hanjani S, Du X, Zhao M, Walsh K, Malisch TW, Charbel FT. Use of quantitative magnetic resonance angiography to stratify stroke risk in symptomatic vertebrobasilar disease. Stroke. 2005;36:1140–5.

    Article  PubMed  Google Scholar 

  53. Buijs PC, Krabbe-Hartkamp MJ, Bakker CJ, de Lange EE, Ramos LM, Breteler MM, Mali WP. Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology. 1998;209:667–74.

    Article  CAS  PubMed  Google Scholar 

  54. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med. 1988;6:164–74.

    Article  CAS  PubMed  Google Scholar 

  55. Hillis AE, Ulatowski JA, Barker PB, Torbey M, Ziai W, Beauchamp NJ, Oh S, Wityk RJ. A pilot randomized trial of induced blood pressure elevation: effects on function and focal perfusion in acute and subacute stroke. Cerebrovasc Dis. 2003;16:236–46.

    Article  CAS  PubMed  Google Scholar 

  56. Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534–46.

    Article  PubMed  Google Scholar 

  57. Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q. 1991;7:1–30.

    PubMed  Google Scholar 

  58. Nitkunan A, Charlton RA, McIntyre DJO, Barrick TR, Howe FA, Markus HS. Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease. Magn Reson Med. 2008;59:528–34.

    Article  CAS  PubMed  Google Scholar 

  59. Gons RAR, de Laat KF, van Norden AGW, van Oudheusden LJB, van Uden IWM, Norris DG, Zwiers MP, de Leeuw F-E. Hypertension and cerebral diffusion tensor imaging in small vessel disease. Stroke. 2010;41:2801–6.

    Article  PubMed  Google Scholar 

  60. Reeder SB, Atalay MK, McVeigh ER, Zerhouni EA, Forder JR. Quantitative cardiac perfusion: a noninvasive spin-labeling method that exploits coronary vessel Geometry 1. Radiology. 1996;200:177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McLaughlin AC, Ye FQ, Pekar JJ, Santha AK, Frank JA. Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation. Magn Reson Med. 1997;37:501–10.

    Article  CAS  PubMed  Google Scholar 

  62. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008;60:1488–97.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tryambake D, He J, Firbank MJ, O’Brien JT, Blamire AM, Ford GA. Intensive blood pressure lowering increases cerebral blood flow in older subjects with hypertension. Hypertension. 2013;61:1309–15.

    Article  CAS  PubMed  Google Scholar 

  64. Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, Terrero G, Schwarz NF, Walsh EG, Poppas A, Cohen RA, Sweet LH. The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens. 2014;8:561–70.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64:803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stehling MK, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science. 1991;254:43–50.

    Article  CAS  PubMed  Google Scholar 

  68. Taylor BA, Elliott AM, Hwang KP, Hazle JD, Stafford RJ. Correlation between the temperature dependence of intrinsic MR parameters and thermal dose measured by a rapid chemical shift imaging technique. NMR Biomed. 2011;24:1414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kadjane P, Platas-Iglesias C, Boehm-Sturm P, Truffault V, Hagberg GE, Hoehn M, Logothetis NK, Angelovski G. Dual-frequency calcium-responsive MRI agents. Chem Eur J. 2014;20:7351–62.

    Article  CAS  PubMed  Google Scholar 

  70. Raghunand N, Howison C, Sherry AD, Zhang S, Gillies RJ. Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med. 2003;49:249–57.

    Article  CAS  PubMed  Google Scholar 

  71. Wang R, Foniok T, Wamsteeker JI, Qiao M, Tomanek B, Vivanco RA, Tuor UI. Transient blood pressure changes affect the functional magnetic resonance imaging detection of cerebral activation. Neuroimage. 2006;31:1–11.

    Article  PubMed  Google Scholar 

  72. Hamzei F, Knab R, Weiller C, Röther J. The influence of extra- and intracranial artery disease on the BOLD signal in FMRI. Neuroimage. 2003;20:1393–9.

    Article  PubMed  Google Scholar 

  73. Krainik A, Hund-Georgiadis M, Zysset S, von Cramon DY. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after. Stroke. 2005;36:1146–52.

    Article  PubMed  Google Scholar 

  74. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998;95:1834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage. 2007;37:808–20.

    Article  PubMed  Google Scholar 

  76. Mark CI, Fisher JA, Pike GB. Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli. Neuroimage. 2011;54:1102–11.

    Article  PubMed  Google Scholar 

  77. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med. 1999;42:849–63.

    Article  CAS  PubMed  Google Scholar 

  78. Marrett S, Gjedde A. Changes of blood flow and oxygen consumption in visual cortex of living humans. Adv Exp Med Biol. 1997;413:205–8.

    Article  CAS  PubMed  Google Scholar 

  79. Chen JJ, Pike GB. MRI measurement of the BOLD-specific flow—volume relationship during hypercapnia and hypocapnia in humans. Neuroimage. 2010;53:383–91.

    Article  PubMed  Google Scholar 

  80. Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM. The Effects of Changes in PaCO2 Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit Time. Stroke. 1974;5:630–9.

    Article  PubMed  Google Scholar 

  81. Gauthier CJ, Hoge RD. A generalized procedure for calibrated MRI incorporating hyperoxia and hypercapnia. Hum Brain Mapp. 2013;34:1053–69.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Dyson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dyson, K.S., Hoge, R.D. (2016). Neuroimaging as a Research Tool in Human Essential Hypertension. In: Girouard, H. (eds) Hypertension and the Brain as an End-Organ Target. Springer, Cham. https://doi.org/10.1007/978-3-319-25616-0_4

Download citation

Publish with us

Policies and ethics