Skip to main content

Sex Differences in Neural Regulation of Hypertension

  • Chapter
  • First Online:
Hypertension and the Brain as an End-Organ Target

Abstract

Sex differences in the incidence of hypertension occur as early as adolescence and persist through reproductive senescence both in humans and experimental animals. These sex differences have profound implications for the treatment of not only hypertension but also risk-related cardiovascular diseases. Historically, inadequate tools for identifying specific gonadal hormone receptors have hampered an understanding of the cellular basis of gender differences in hypertension. The emergence of receptor-specific reagents provides the opportunity for a more detailed understanding of the potential cellular sites of action for endogenous and exogenous gonadal hormone receptor ligands. High-resolution electron microscopic imaging employing nanogold and other markers is leading to a reevaluation of gonadal hormone signaling in the brain. One of the most surprising findings is that the neuronal distribution of these receptors frequently occurs at sites classically thought to be the purview of only neurotransmitters and related signaling molecules. We will discuss findings that estrogen receptors are anatomically poised to influence the regulation of blood pressure in response to estrogens in a number of brain regions involved in cardiovascular regulation. We will also present an overview of potential subcellular sites of interaction of estrogen receptors with angiotensin II and related signaling molecules critical for neuronal activation and plasticity in brain cardiovascular regulatory circuits. Since hypertension is known to impair brain health, the role of sex differences in some prevalent hypertension-associated neurological diseases is also discussed. Understanding the mechanisms underlying sex differences in the neural regulation of blood pressure will provide critical new information necessary for understanding the actions of gonadal hormones in the brain, which, in turn, will be critical for the development of new antihypertensive treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of gender is most appropriately related to self-identification with a particular sex, while sex is used in this context to distinguish between males and females of any species.

References

  1. Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol. 2014;306:H1–14. doi:10.1152/ajpheart.00364.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faraco G, Iadecola C. Hypertension: a harbinger of stroke and dementia. Hypertension. 2013;62:810–7. doi:10.1161/HYPERTENSIONAHA.113.01063.

    Article  CAS  PubMed  Google Scholar 

  3. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PWF, Woo YJ, American Heart Association Advocacy Coordinating Committee, Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Cardiovascular Nursing, Council on the Kidney in Cardiovascular Disease, Council on Cardiovascular Surgery and Anesthesia, and Interdisciplinary, Council on Quality of Care and Outcomes Research. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44. doi:10.1161/CIR.0b013e31820a55f5.

    Article  PubMed  Google Scholar 

  4. Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ. 2012;3:7. doi:10.1186/2042-6410-3-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blood pressure tracking over the adult life course: patterns and correlates in the Framingham heart study (2012) Blood pressure tracking over the adult life course: patterns and correlates in the Framingham heart study. 60, 1393–1399. doi:10.1161/HYPERTENSIONAHA.112.201780

    Google Scholar 

  6. Martins D, Nelson K, Pan D, Tareen N, Norris K. The effect of gender on age-related blood pressure changes and the prevalence of isolated systolic hypertension among older adults: data from NHANES III. J Gend Specif Med. 2001;4(3):103.

    Google Scholar 

  7. Burt VL, Cutler JA, Higgins M, Horan MJ, Labarthe D, Whelton P, Brown C, Roccella EJ. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension. 1995;26:60–9.

    Article  CAS  PubMed  Google Scholar 

  8. Roger VL, O’Donnell CJ. Population health, outcomes research, and prevention: example of the American Heart Association 2020 goals. Circ Cardiovasc Qual Outcomes. 2012;5:6–8. doi:10.1161/CIRCOUTCOMES.111.964734.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sadeghi M, Khalili M, Pourmoghaddas M, Talaei M. The correlation between blood pressure and hot flashes in menopausal women. ARYA Atheroscler. 2012;8:32–5.

    PubMed  PubMed Central  Google Scholar 

  10. Thurston RC, Christie IC, Matthews KA. Hot flashes and cardiac vagal control during women’s daily lives. Menopause. 2012;19:406–12. doi:10.1097/gme.0b013e3182337166.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hay M, Xue B, Johnson AK. Yes! sex matters: sex, the brain and blood pressure. Curr Hypertens Rep. 2014;16(8):458. doi:10.1007/s11906-014-0458-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saranya K, Pal GK, Habeebullah S, Pal P. Assessment of cardiovascular autonomic function in patients with polycystic ovary syndrome. J Obstet Gynaecol Res. 2014;40:192–9. doi:10.1111/jog.12154.

    Article  PubMed  Google Scholar 

  13. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach J, Joyner MJ. Sex and ageing differences in resting arterial pressure regulation: the role of the β-adrenergic receptors. J Physiol (Lond). 2011;589:5285–97. doi:10.1113/jphysiol.2011.212753.

    Article  CAS  Google Scholar 

  14. Freedman RR, Kruger ML, Wasson SL. Heart rate variability in menopausal hot flashes during sleep. Menopause. 2011;18:897–900. doi:10.1097/gme.0b013e31820ac941.

    Article  PubMed  PubMed Central  Google Scholar 

  15. de Zambotti M, Colrain IM, Sassoon SA, Nicholas CL, Trinder J, Baker FC. Vagal withdrawal during hot flashes occurring in undisturbed sleep. Menopause. 2013;20:1147–53. doi:10.1097/GME.0b013e31828aa344.

    Article  PubMed  Google Scholar 

  16. Lantto H, Haapalahti P, Tuomikoski P, Viitasalo M, Väänänen H, Sovijärvi ARA, Ylikorkala O, Mikkola TS. Vasomotor hot flashes and heart rate variability. Menopause. 2012;19:82–8. doi:10.1097/gme.0b013e318221bae8.

    Article  PubMed  Google Scholar 

  17. Corbelli J, Shaikh N, Wessel C, Hess R. Low-dose transdermal estradiol for vasomotor symptoms: a systematic review. Menopause. 2014;22:897–900. doi:10.1097/GME.0000000000000258.

    Google Scholar 

  18. Joffe H, Hall JE, Gruber S, Sarmiento IA, Cohen LS, Yurgelun-Todd D, Martin KA. Estrogen therapy selectively enhances prefrontal cognitive processes: a randomized, double-blind, placebo-controlled study with functional magnetic resonance imaging in perimenopausal and recently postmenopausal women. Menopause. 2006;13:411–22. doi:10.1097/01.gme.0000189618.48774.7b.

    Article  PubMed  Google Scholar 

  19. Tuomikoski P, Haapalahti P, Sarna S, Ylikorkala O, Mikkola TS. Vasomotor hot flushes and 24-hour ambulatory blood pressure in normotensive women: a placebo-controlled trial on post-menopausal hormone therapy. Ann Med. 2010;42:334–43. doi:10.3109/07853891003796760.

    Article  CAS  PubMed  Google Scholar 

  20. Ji H, Zheng W, Wu X, Liu J, Ecelbarger CM, Watkins R, Arnold AP, Sandberg K. Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension. 2010;55:1275–82. doi:10.1161/HYPERTENSIONAHA.109.144949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jessup JA, Wang H, MacNamara LM, Presley TD, Kim-Shapiro DB, Zhang L, Chen AF, Groban L. Estrogen therapy, independent of timing, improves cardiac structure and function in oophorectomized mRen2.Lewis rats. Menopause. 2013;20:860–8. doi:10.1097/GME.0b013e318280589a.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mayer LP, Dyer CA, Eastgard RL, Hoyer PB, Banka CL. Atherosclerotic lesion development in a novel ovary-intact mouse model of perimenopause. Arterioscler Thromb Vasc Biol. 2005;25:1910–6. doi:10.1161/01.ATV.0000175767.46520.6a.

    Article  CAS  PubMed  Google Scholar 

  23. Saleh MC, Connell BJ, Saleh TM. Medullary and intrathecal injections of 17beta-estradiol in male rats. Brain Res. 2000;867:200–9.

    Article  CAS  PubMed  Google Scholar 

  24. Saleh MC, Connell BJ, Saleh TM. Autonomic and cardiovascular reflex responses to central estrogen injection in ovariectomized female rats. Brain Res. 2000;879:105–14.

    Article  CAS  PubMed  Google Scholar 

  25. Saleh TM, Connell BJ, Saleh MC. Acute injection of 17beta-estradiol enhances cardiovascular reflexes and autonomic tone in ovariectomized female rats. Auton Neurosci. 2000;84:78–88.

    Article  CAS  PubMed  Google Scholar 

  26. Xue B, Singh M, Guo F, Hay M, Johnson AK. Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide. Am J Physiol Heart Circ Physiol. 2009;297:H1638–46. doi:10.1152/ajpheart.00502.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang G, Milner TA, Speth RC, Gore AC, Wu D, Iadecola C, Pierce JP. Sex differences in angiotensin signaling in bulbospinal neurons in the rat rostral ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1149–57. doi:10.1152/ajpregu.90485.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao X, Peterson JR, Wang G, Anrather J, Young CN, Guruju MR, Burmeister MA, Iadecola C, Davisson RL. Angiotensin II-dependent hypertension requires cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical organ of the brain. Hypertension. 2012;59:869–76. doi:10.1161/HYPERTENSIONAHA.111.182071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marques Lopes J, Van Kempen TA, Waters EM, Pickel VM, Iadecola C, Milner TA. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor beta-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. J Comp Neurol. 2014. doi:10.1002/cne.23569.

    PubMed  PubMed Central  Google Scholar 

  30. Duckles SP, Krause DN. Cerebrovascular effects of oestrogen: multiplicity of action. Clin Exp Pharmacol Physiol. 2007;34:801–8. doi:10.1111/j.1440-1681.2007.04683.x.

    Article  CAS  PubMed  Google Scholar 

  31. Xue B, Johnson AK, Hay M. Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. Am J Physiol Regul Integr Comp Physiol. 2013;305:R459–63. doi:10.1152/ajpregu.00222.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension. Am J Physiol Heart Circ Physiol. 2014;307:H191–8. doi:10.1152/ajpheart.01012.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosas-Arellano PM, Solano-Flores PL, Ciriello J. Co-localization of estrogen and angiotensin receptors within subfornical organ neurons. Brain Res. 1999;837:254–62. doi:10.1016/S0006-8993(99)01672-8.

    Article  CAS  PubMed  Google Scholar 

  34. Spary EJ, Maqbool A, Batten TFC. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat. 2009;38:185–96. doi:10.1016/j.jchemneu.2009.05.008.

    Article  CAS  PubMed  Google Scholar 

  35. McEwen B. Estrogen actions throughout the brain. Recent Prog Horm Res. 2002;57:357–84.

    Article  CAS  PubMed  Google Scholar 

  36. Roepke TA, Qiu J, Bosch MA, Rønnekleiv OK, Kelly MJ. Cross-talk between membrane-initiated and nuclear-initiated oestrogen signalling in the hypothalamus. J Neuroendocrinol. 2009;21:263–70. doi:10.1111/j.1365-2826.2009.01846.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roepke TA, Rønnekleiv OK, Kelly MJ. Physiological consequences of membrane-initiated estrogen signaling in the brain. Front Biosci (Landmark Ed). 2011;16:1560–73.

    Article  CAS  PubMed Central  Google Scholar 

  38. McEwen BS, Akama KT, Spencer-Segal JL, Milner TA, Waters EM. Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. Behav Neurosci. 2012;126:4–16. doi:10.1037/a0026708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arias-Loza PA, Jazbutyte V, Pelzer T. Genetic and pharmacologic strategies to determine the function of estrogen receptor α and estrogen receptor β in cardiovascular system. Gend Med. 2008;5:S34–45. doi:10.1016/j.genm.2008.03.005.

    Article  PubMed  Google Scholar 

  40. Xue B, Pamidimukkala J, Lubahn DB, Hay M. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. Am J Physiol Heart Circ Physiol. 2007;292:H1770–6. doi:10.1152/ajpheart.01011.2005.

    Article  CAS  PubMed  Google Scholar 

  41. Pedram A, Razandi M, Korach KS, Narayanan R, Dalton JT, Levin ER. ERβ Selective Agonist Inhibits Angiotensin-Induced Cardiovascular Pathology in Female Mice. Endocrinology. 2013;154:4352–64. doi:10.1210/en.2013-1358.

    Article  CAS  PubMed  Google Scholar 

  42. Brailoiu E, Dun SL, Brailoiu GC, Mizuo K, Sklar LA, Oprea TI, Prossnitz ER, Dun NJ. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol. 2007;193:311–21. doi:10.1677/JOE-07-0017.

    Article  CAS  PubMed  Google Scholar 

  43. Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension. 2011. doi:10.1161/HYPERTENSIONAHA.110.161653.

    PubMed  Google Scholar 

  44. Sakamoto H, Matsuda K-I, Hosokawa K, Nishi M, Morris JF, Prossnitz ER, Kawata M. Expression of G protein-coupled receptor-30, a G protein-coupled membrane estrogen receptor, in oxytocin neurons of the rat paraventricular and supraoptic nuclei. Endocrinology. 2007;148:5842–50. doi:10.1210/en.2007-0436.

    Article  CAS  PubMed  Google Scholar 

  45. Akama KT, Thompson LI, Milner TA, McEwen BS. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. J Biol Chem. 2013;288:6438–50. doi:10.1074/jbc.M112.412478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nilsson B-O, Olde B, Leeb-Lundberg LMF. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br J Pharmacol. 2011;163:1131–9. doi:10.1111/j.1476-5381.2011.01235.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mani SK, Mermelstein PG, Tetel MJ, Anesetti G. Convergence of multiple mechanisms of steroid hormone action. Horm Metab Res. 2012;44:569–76. doi:10.1055/s-0032-1306343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haywood SA, Simonian SX, van der Beek EM, Bicknell RJ, Herbison AE. Fluctuating estrogen and progesterone receptor expression in brainstem norepinephrine neurons through the rat estrous cycle. Endocrinology. 1999;140:3255–63. doi:10.1210/endo.140.7.6869.

    CAS  PubMed  Google Scholar 

  49. Milner TA, Drake CT, Lessard A, Waters EM, Torres-Reveron A, Graustein B, Mitterling K, Frys K, Iadecola C. Angiotensin II-induced hypertension differentially affects estrogen and progestin receptors in central autonomic regulatory areas of female rats. Exp Neurol. 2008;212:393–406. doi:10.1016/j.expneurol.2008.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simonian SX, Herbison AE. Localization of neuronal nitric oxide synthase-immunoreactivity within sub-populations of noradrenergic A(1) and A(2) neurons in the rats. Brain Res. 1996;732:247–52. doi:10.1016/0006-8993(96)00687-7.

    Article  CAS  PubMed  Google Scholar 

  51. Doncarlos LL, Garcia-Ovejero D, Sarkey S, Garcia-Segura LM, Azcoitia I. Androgen receptor immunoreactivity in forebrain axons and dendrites in the rat. Endocrinology. 2003;144:3632–8. doi:10.1210/en.2002-0105.

    Article  CAS  PubMed  Google Scholar 

  52. Hamson DK, Jones BA, Watson NV. Distribution of androgen receptor immunoreactivity in the brainstem of male rats. Neuroscience. 2004;127:797–803. doi:10.1016/j.neuroscience.2004.06.006.

    Article  CAS  PubMed  Google Scholar 

  53. Xue B. Sex differences in the development of angiotensin II-induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol. 2005;288:H2177–84. doi:10.1152/ajpheart.00969.2004.

    Article  CAS  PubMed  Google Scholar 

  54. Fortepiani LA, Yanes L, Zhang H, Racusen LC, Reckelhoff JF. Role of androgens in mediating renal injury in aging SHR. Hypertension. 2003;42:952–5. doi:10.1161/01.HYP.0000099241.53121.7F.

    Article  CAS  PubMed  Google Scholar 

  55. Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S, Alves SE. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol. 2005;491:81–95. doi:10.1002/cne.20724.

    Article  CAS  PubMed  Google Scholar 

  56. Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90:3847–53. doi:10.1210/jc.2005-0212.

    Article  CAS  PubMed  Google Scholar 

  57. Leenen FHH. Actions of Circulating Angiotensin II and Aldosterone in the Brain Contributing to Hypertension. Am J Hypertens. 2014;27:1024–32. doi:10.1093/ajh/hpu066.

    Article  PubMed  Google Scholar 

  58. De Luca LA, Menani JV, Johnson AK, Vieira AA, Colombari DSA, De Paula PM, Colombari E, De Luca LA. Preoptic–periventricular integrative mechanisms involved in behavior, fluid–electrolyte balance, and pressor responses. Boca Raton: CRC; 2014.

    Google Scholar 

  59. Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, Sigmund CD. Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest. 2007;117:1088–95. doi:10.1172/JCI31242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology. 2008;23:187–93. doi:10.1152/physiol.00002.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grobe JL, Xu D, Sigmund CD. The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Physiology. 2010;12:431–42. doi:10.1016/j.cmet.2010.09.011.

    CAS  Google Scholar 

  62. Macova M, Pavel J, Saavedra JM. A peripherally administered, centrally acting angiotensin II AT2 antagonist selectively increases brain AT1 receptors and decreases brain tyrosine hydroxylase transcription, pituitary vasopressin and ACTH. Brain Res. 2009;1250:130–40. doi:10.1016/j.brainres.2008.11.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalez AD, Wang G, Waters EM, Gonzales KL, Speth RC, Van Kempen TA, Marques Lopes J, Young CN, Butler SD, Davisson RL, Iadecola C, Pickel VM, Pierce JP, Milner TA. Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice. Neuroscience. 2012;226:489–509. doi:10.1016/j.neuroscience.2012.08.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chan SHH, Chan JYH. Brain stem NOS and ROS in neural mechanisms of hypertension. Antioxid Redox Signal. 2014;20:146–63. doi:10.1089/ars.2013.5230.

    Article  CAS  PubMed  Google Scholar 

  65. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313. doi:10.1152/physrev.00044.2005.

    Article  CAS  PubMed  Google Scholar 

  66. Nauseef WM. Biological roles for the NOX family NADPH oxidases. J Biol Chem. 2008;283:16961–5. doi:10.1074/jbc.R700045200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jones SA, Wood JD, Coffey MJ, Jones O. The functional expression of P47-Phox and P67-Phox may contribute to the generation of superoxide by an NADPH oxidase-like system in human fibroblasts. FEBS Lett. 1994;355:178–82.

    Article  CAS  PubMed  Google Scholar 

  68. Wang G, Coleman CG, Chan J, Faraco G, Marques Lopes J, Milner TA, Guruju MR, Anrather J, Davisson RL, Iadecola C, Pickel VM. Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. Am J Physiol Regul Integr Comp Physiol. 2013;304:R1096–106. doi:10.1152/ajpregu.00367.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang G, Wang G, Anrather J, Huang J, Speth RC, Pickel VM, Iadecola C. NADPH oxidase contributes to angiotensin II signaling in the nucleus tractus solitarius. J Neurosci. 2004;24:5516–24. doi:10.1523/JNEUROSCI.1176-04.2004.

    Article  CAS  PubMed  Google Scholar 

  70. Girouard H, Wang G, Gallo EF, Anrather J, Zhou P, Pickel VM, Iadecola C. NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci. 2009;29:2545–52. doi:10.1523/JNEUROSCI.0133-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kimura Y, Hirooka Y, Kishi T, Sagara Y, Sunagawa K. Role of inducible nitric oxide synthase in rostral ventrolateral medulla in blood pressure regulation in spontaneously hypertensive rats. Clin Exp Hypertens. 2009;31:281–6. doi:10.1080/10641960902822534.

    Article  CAS  PubMed  Google Scholar 

  72. Zimmerman MC, Sharma RV, Davisson RL. Superoxide mediates angiotensin II—induced influx of extracellular calcium in neural cells. Hypertension. 2005;45:717–23. doi:10.1161/01.HYP.0000153463.22621.5e.

    Article  CAS  PubMed  Google Scholar 

  73. Wang G, Sarkar P, Peterson JR, Anrather J, Pierce JP, Moore JM, Feng J, Zhou P, Milner TA, Pickel VM, Iadecola C, Davisson RL. COX-1-derived PGE2 and PGE2 type 1 receptors are vital for angiotensin II-induced formation of reactive oxygen species and Ca(2+) influx in the subfornical organ. Am J Physiol Heart Circ Physiol. 2013;305:H1451–61. doi:10.1152/ajpheart.00238.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Coleman CG, Wang G, Faraco G, Marques Lopes J, Waters EM, Milner TA, Iadecola C, Pickel VM. Membrane trafficking of NADPH oxidase p47phox in paraventricular hypothalamic neurons parallels local free radical production in angiotensin II slow-pressor hypertension. J Neurosci. 2013;33:4308–16. doi:10.1523/JNEUROSCI.3061-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malenka RC, Nicoll RA. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 1993;16:521–7.

    Article  CAS  PubMed  Google Scholar 

  76. Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS. Trafficking of NMDA receptors 1. Annu Rev Pharmacol Toxicol. 2003;43:335–58. doi:10.1146/annurev.pharmtox.43.100901.135803.

    Article  CAS  PubMed  Google Scholar 

  77. Wehrwein EA, Joyner MJ. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb Clin Neurol. 2014;117:89–102.

    Article  Google Scholar 

  78. Machado BH. Neurotransmission of the cardiovascular reflexes in the nucleus tractus solitarii of awake rats. Ann N Y Acad Sci. 2001;940:179–96.

    Article  CAS  PubMed  Google Scholar 

  79. Aicher SA, Milner TA, Pickel VM, Reis DJ. Anatomical substrates for baroreflex sympathoinhibition in the rat. Brain Res Bull. 2000;51:107–10.

    Article  CAS  PubMed  Google Scholar 

  80. Guyenet PG, Stornetta RL, Bochorishvili G, DePuy SD, Burke PGR, Abbott SBG. C1 neurons: the body’s EMTs. Am J Physiol Regul Integr Comp Physiol. 2013;305:R187–204. doi:10.1152/ajpregu.00054.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Osborn JW, Jacob F, Guzman P. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am J Physiol Regul Integr Comp Physiol. 2005;288:R846–55. doi:10.1152/ajpregu.00474.2004.

    Article  CAS  PubMed  Google Scholar 

  82. Benarroch EE. Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res. 2005;15:254–63. doi:10.1007/s10286-005-0290-7.

    Article  PubMed  Google Scholar 

  83. Hendel MD, Collister JP. Contribution of the subfornical organ to angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol. 2005;288:H680–5. doi:10.1152/ajpheart.00823.2004.

    Article  CAS  PubMed  Google Scholar 

  84. Bains JS, Ferguson AV. Paraventricular nucleus neurons projecting to the spinal cord receive excitatory input from the subfornical organ. Am J Physiol. 1995;268:R625–33.

    CAS  PubMed  Google Scholar 

  85. Braga VA, Medeiros IA, Ribeiro TP, França-Silva MS, Botelho-Ono MS, Guimarães DD. Angiotensin-II-induced reactive oxygen species along the SFO-PVN-RVLM pathway: implications in neurogenic hypertension. Braz J Med Biol Res. 2011;44:871–6. doi:10.1590/S0100-879X2011007500088.

    Article  CAS  PubMed  Google Scholar 

  86. Kawano H, Masuko S. Region-specific projections from the subfornical organ to the paraventricular hypothalamic nucleus in the rat. Neuroscience. 2010;169:1227–34. doi:10.1016/j.neuroscience.2010.05.065.

    Article  CAS  PubMed  Google Scholar 

  87. Bains JS, Potyok A, Ferguson AV. Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Res. 1992;599:223–9.

    Article  CAS  PubMed  Google Scholar 

  88. Li Z, Ferguson AV. Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. Am J Physiol. 1993;265:R302–9.

    CAS  PubMed  Google Scholar 

  89. Biag J, Huang Y, Gou L, Hintiryan H, Askarinam A, Hahn JD, Toga AW, Dong H-W. Cyto- and chemoarchitecture of the hypothalamic paraventricular nucleus in the C57BL/6J male mouse: a study of immunostaining and multiple fluorescent tract tracing. J Comp Neurol. 2011;520:6–33. doi:10.1002/cne.22698.

    Article  Google Scholar 

  90. Wang G, Drake CT, Rozenblit M, Zhou P, Alves SE, Herrick SP, Hayashi S, Warrier S, Iadecola C, Milner TA. Evidence that estrogen directly and indirectly modulates C1 adrenergic bulbospinal neurons in the rostral ventrolateral medulla. Brain Res. 2006;1094:163–78. doi:10.1016/j.brainres.2006.03.089.

    Article  CAS  PubMed  Google Scholar 

  91. Spary EJ, Maqbool A, Batten TFC. Changes in oestrogen receptor α expression in the nucleus of the solitary tract of the rat over the oestrous cycle and following ovariectomy. J Neuroendocrinol. 2010;22:492–502. doi:10.1111/j.1365-2826.2010.01977.x.

    Article  CAS  PubMed  Google Scholar 

  92. Xue B, Hay M. 17β-Estradiol inhibits excitatory amino acid-induced activity of neurons of the nucleus tractus solitarius. Brain Res. 2003;976:41–52. doi:10.1016/S0006-8993(03)02629-5.

    Article  CAS  PubMed  Google Scholar 

  93. Pierce JP, Kievits J, Graustein B, Speth RC, Iadecola C, Milner TA. Sex differences in the subcellular distribution of angiotensin type 1 receptors and NADPH oxidase subunits in the dendrites of C1 neurons in the rat rostral ventrolateral medulla. Neuroscience. 2009;163:329–38. doi:10.1016/j.neuroscience.2009.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tanaka J, Miyakubo H, Okumura T, Sakamaki K, Hayashi Y. Estrogen decreases the responsiveness of subfornical organ neurons projecting to the hypothalamic paraventricular nucleus to angiotensin II in female rats. Neurosci Lett. 2001;307:155–8.

    Article  CAS  PubMed  Google Scholar 

  95. Ciriello J, Roder S. 17β-Estradiol alters the response of subfornical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia. Brain Res. 2013;1526:54–64. doi:10.1016/j.brainres.2013.06.038.

    Article  CAS  PubMed  Google Scholar 

  96. Xue B, Zhao Y, Johnson AK, Hay M. Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol. 2008;295:H1025–32. doi:10.1152/ajpheart.00021.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gingerich S, Krukoff TL. Estrogen modulates endothelial and neuronal nitric oxide synthase expression via an estrogen receptor β-dependent mechanism in hypothalamic slice cultures. Endocrinology. 2005;146:2933–41. doi:10.1210/en.2004-1375.

    Article  CAS  PubMed  Google Scholar 

  98. Milner TA, Thompson LI, Wang G, Kievits JA, Martin E, Zhou P, McEwen BS, Pfaff DW, Waters EM. Distribution of estrogen receptor beta containing cells in the brains of bacterial artificial chromosome transgenic mice. Brain Res. 2010;1351:74–96. doi:10.1016/j.brainres.2010.06.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alves SE, Lopez V, McEwen BS, Weiland NG. Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: an immunocytochemical study. Proc Natl Acad Sci U S A. 1998;95:3281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Laflamme N, Nappi RE, Drolet G, Labrie C, Rivest S. Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. J Neurobiol. 1998;36:357–78. doi:10.1002/(SICI)1097-4695(19980905)36:3<357::AID-NEU5>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  101. Wei S-G, Yu Y, Zhang Z-H, Felder RB. Angiotensin II upregulates hypothalamic AT1 receptor expression in rats via the mitogen-activated protein kinase pathway. Am J Physiol Heart Circ Physiol. 2009;296:H1425–33. doi:10.1152/ajpheart.00942.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Girouard H. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35. doi:10.1152/japplphysiol.00966.2005.

    Article  CAS  PubMed  Google Scholar 

  103. Baumbach GL, Heistad DD. Cerebral circulation in chronic arterial hypertension. Hypertension. 1988;12:89–95. doi:10.1161/01.HYP.12.2.89.

    Article  CAS  PubMed  Google Scholar 

  104. Iadecola C. Hypertension and dementia. Hypertension. 2014;64:3–5. doi:10.1161/HYPERTENSIONAHA.114.03040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Calcinaghi N, Wyss MT, Jolivet R, Singh A, Keller AL, Winnik S, Fritschy J-M, Buck A, Matter CM, Weber B. Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension. Stroke. 2013;44:1957–64. doi:10.1161/STROKEAHA.111.000185.

    Article  PubMed  Google Scholar 

  106. Capone C, Faraco G, Park L, Cao X, Davisson RL, Iadecola C. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol. 2011;300:H397–407. doi:10.1152/ajpheart.00679.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits. 2012;6:51. doi:10.3389/fncir.2012.00051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Faraci FM. Effects of angiotensin II on the cerebral circulation: role of oxidative stress 1–11. 2012. doi:10.3389/fphys.2012.00484/abstract.

    Google Scholar 

  109. Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler Thromb Vasc Biol. 2006;26:826–32. doi:10.1161/01.ATV.0000205849.22807.6e.

    Article  CAS  PubMed  Google Scholar 

  110. Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res. 2004;95:1019–26. doi:10.1161/01.RES.0000148637.85595.c5.

    Article  CAS  PubMed  Google Scholar 

  111. Girouard H, Lessard A, Capone C, Milner TA, Iadecola C. The neurovascular dysfunction induced by angiotensin II in the mouse neocortex is sexually dimorphic. Am J Physiol Heart Circ Physiol. 2008;294:H156–63. doi:10.1152/ajpheart.01137.2007.

    Article  CAS  PubMed  Google Scholar 

  112. Murata T, Dietrich HH, Xiang C, Dacey RG. G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. Stroke. 2013;44:779–85. doi:10.1161/STROKEAHA.112.678177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Reslan OM, Yin Z, do Nascimento GRA, Khalil RA. Subtype-specific estrogen receptor-mediated vasodilator activity in the cephalic, thoracic, and abdominal vasculature of female rat. J Cardiovasc Pharmacol. 2013;62:26–40. doi:10.1097/FJC.0b013e31828bc88a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Capone C, Anrather J, Milner TA, Iadecola C. Estrous cycle-dependent neurovascular dysfunction induced by angiotensin II in the mouse neocortex. Hypertension. 2009;54:302–7. doi:10.1161/HYPERTENSIONAHA.109.133249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li R, Singh M. Sex differences in cognitive impairment and Alzheimer’s disease. Front Neuroendocrinol. 2014;35:385–403. doi:10.1016/j.yfrne.2014.01.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215. doi:10.1161/CIRCULATIONAHA.109.192667.

    Article  PubMed  Google Scholar 

  117. Roy-O’Reilly M, McCullough LD. Sex differences in stroke: The contribution of coagulation. Exp Neurol. 2014;259:16–27. doi:10.1016/j.expneurol.2014.02.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Milner E, Zhou M-L, Johnson AW, Vellimana AK, Greenberg JK, Holtzman DM, Han BH, Zipfel GJ. Cerebral amyloid angiopathy increases susceptibility to infarction after focal cerebral ischemia in tg2576 mice. Stroke. 2014;45:3064–9. doi:10.1161/STROKEAHA.114.006078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang X, Yeung PKK, McAlonan GM, Chung SSM, Chung SK. Transgenic mice over-expressing endothelial endothelin-1 show cognitive deficit with blood-brain barrier breakdown after transient ischemia with long-term reperfusion. Neurobiol Learn Mem. 2013;101:46–54. doi:10.1016/j.nlm.2013.01.002.

    Article  CAS  PubMed  Google Scholar 

  120. Wierenga CE, Hays CC, Zlatar ZZ. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis. 2014. doi:10.3233/JAD-141467.

    PubMed Central  Google Scholar 

  121. Sayed K, Taha TTI, Saad M, Mohsen LA, Ibrahiem MA, Fadeel NAA, Sotouhy A. Is mini-mental score examination scoring a new predictor of uncontrolled hypertension? J Clin Hypertens. 2014;16:348–53. doi:10.1111/jch.12319.

    Article  Google Scholar 

  122. Park L, Koizumi K, Jamal E, S, Zhou P, Previti ML, Van Nostrand WE, Carlson G, Iadecola C. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke. 2014;45:1815–21. doi:10.1161/STROKEAHA.114.005179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Takeda S, Sato N, Takeuchi D, Kurinami H, Shinohara M, Niisato K, Kano M, Ogihara T, Rakugi H, Morishita R. Angiotensin receptor blocker prevented beta-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension. 2009;54:1345–52. doi:10.1161/HYPERTENSIONAHA.109.138586.

    Article  CAS  PubMed  Google Scholar 

  124. Strom JO, Theodorsson A, Theodorsson E. Dose-related neuroprotective versus neurodamaging effects of estrogens in rat cerebral ischemia: a systematic analysis. J Cereb Blood Flow Metab. 2009;29:1359–72. doi:10.1038/jcbfm.2009.66.

    Article  CAS  PubMed  Google Scholar 

  125. Davis CM, Fairbanks SL, Alkayed NJ. Mechanism of the sex difference in endothelial dysfunction after stroke. Transl Stroke Res. 2012;4:381–9. doi:10.1007/s12975-012-0227-0.

    Article  PubMed Central  Google Scholar 

  126. Miller VM, Duckles SP. Vascular actions of estrogens: functional implications. Pharmacol Rev. 2008;60:210–41. doi:10.1124/pr.107.08002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fagernaes CF, Heuch I, Zwart JA, Winsvold BS, Linde M, Hagen K. Blood pressure as a risk factor for headache and migraine: a prospective population-based study. Eur J Neurol. 2014;22(1):156–62. doi:10.1111/ene.12547.

    Article  PubMed  Google Scholar 

  128. Martin VT. Migraine and the menopausal transition. Neurol Sci. 2014;35:65–9. doi:10.1007/s10072-014-1745-1.

    Article  PubMed  Google Scholar 

  129. Tietjen GE, Herial NA, White L, Utley C, Kosmyna JM, Khuder SA. Migraine and biomarkers of endothelial activation in young women. Stroke. 2009;40:2977–82. doi:10.1161/STROKEAHA.109.547901.

    Article  CAS  PubMed  Google Scholar 

  130. Agostoni E, Aliprandi A. Migraine and hypertension. Neurol Sci. 2008;29:37–9. doi:10.1007/s10072-008-0883-8.

    Article  Google Scholar 

  131. Ripa P, Ornello R, Pistoia F, Carolei A, Sacco S. The renin–angiotensin system: a possible contributor to migraine pathogenesis and prophylaxis. Expert Rev Neurother. 2014;14:1043–55. doi:10.1586/14737175.2014.946408.

    Article  CAS  PubMed  Google Scholar 

  132. Greenage M, Kulaksizoglu B, Cilingiroglu M, Ali R. The role of anxiety and emotional stress as a risk factor in treatment-resistant hypertension. Curr Atheroscler Rep. 2010. doi:10.1007/s11883-010-0154-z.

    Google Scholar 

  133. Kovács KR, Szekeres CC, Bajkó Z, Csapó K, Molnár S, Oláh L, Magyar MT, Bereczki D, Kardos L, Soltész P, Bojtor AB, Csiba L. Cerebro- and cardiovascular reactivity and neuropsychological performance in hypertensive patients. J Neurol Sci. 2010;299:120–5. doi:10.1016/j.jns.2010.07.022.

    Article  PubMed  Google Scholar 

  134. Liu F, Havens J, Yu Q, Wang G, Davisson RL, Pickel VM, Iadecola C. The link between angiotensin II-mediated anxiety and mood disorders with NADPH oxidase-induced oxidative stress. Int J Physiol Pathophysiol Pharmacol. 2012;4:28–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Saavedra JM, Armando I, Bregonzio C, Juorio A, Macova M, Pavel J, Sanchez-Lemus E. A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharmacology. 2006;31:1123–34. doi:10.1038/sj.npp.1300921.

    CAS  PubMed  Google Scholar 

  136. Lermer MA, Morra A, Moineddin R, Manson J, Blake J, Tierney MC. Somatic and affective anxiety symptoms and menopausal hot flashes. Menopause. 2011;18:129–32. doi:10.1097/gme.0b013e3181ec58f8.

    PubMed  Google Scholar 

  137. Duchemin S, Belanger E, Wu R, Ferland G, Girouard H. Chronic perfusion of angiotensin II causes cognitive dysfunctions and anxiety in mice. Physiol Behav. 2013;109:63–8. doi:10.1016/j.physbeh.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  138. Gurney EP, Nachtigall MJ, Nachtigall LE, Naftolin F. The women’s health initiative trial and related studies: 10 years later: a clinician’s view. J Steroid Biochem Mol Biol. 2014;142:4–11. doi:10.1016/j.jsbmb.2013.10.009.

    Article  CAS  PubMed  Google Scholar 

  139. Hodis HN, Mack WJ. Postmenopausal hormone therapy and cardiovascular disease in perspective. Clin Obstet Gynecol. 2008;51:564–80. doi:10.1097/GRF.0b013e318181de86.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, Ko M, LaCroix AZ, Margolis KL, Stefanick ML. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA. 2007;297:1465–77. doi:10.1001/jama.297.13.1465.

    Article  CAS  PubMed  Google Scholar 

  141. Modena MG, Sismondi P, Mueck AO, Kuttenn F, de Lignières B, Verhaeghe J, Foidart JM, Caufriez A, Genazzani AR. New evidence regarding hormone replacement therapies is urgently required. Maturitas. 2005;52:1–10. doi:10.1016/j.maturitas.2005.05.003.

    Article  CAS  PubMed  Google Scholar 

  142. Cannoletta M, Cagnacci A. Modification of blood pressure in postmenopausal women: role of hormone replacement therapy. Int J Womens Health. 2014;6:745–57. doi:10.2147/IJWH.S61685.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. White WB, Hanes V, Mallareddy M, Chauhan V. Effects of the hormone therapy, drospirenone and 17-beta estradiol, on early morning blood pressure in postmenopausal women with hypertension. J Am Soc Hypertens. 2008;2:20–7. doi:10.1016/j.jash.2007.08.004.

    Article  PubMed  Google Scholar 

  144. Vongpatanasin W, Tuncel M, Mansour Y, Arbique D, Victor RG. Transdermal estrogen replacement therapy decreases sympathetic activity in postmenopausal women. Circulation. 2001;103:2903–8. doi:10.1161/01.CIR.103.24.2903.

    Article  CAS  PubMed  Google Scholar 

  145. Africander D, Verhoog N, Hapgood JP. Molecular mechanisms of steroid receptor-mediated actions by synthetic progestins used in HRT and contraception. Steroids. 2011. doi:10.1016/j.steroids.2011.03.001.

    PubMed  Google Scholar 

  146. Preston RA. Comparative effects of conventional vs. novel hormone replacement therapy on blood pressure in postmenopausal women. Climacteric. 2009;12 Suppl 1:66–70.

    Article  CAS  PubMed  Google Scholar 

  147. LHermite M. HRT optimization, using transdermal estradiol plus micronized progesterone, a safer HRT. Climacteric. 2013;16 Suppl 1:44–53. doi:10.3109/13697137.2013.808563.

    Article  CAS  Google Scholar 

  148. Ogawa S, Emi M, Shiraki M, Hosoi T, Ouchi Y, Inoue S. Association of estrogen receptor beta (ESR2) gene polymorphism with blood pressure. J Hum Genet. 2000;45:327–30. doi:10.1007/s100380070002.

    Article  CAS  PubMed  Google Scholar 

  149. Peter I, Shearman AM, Zucker DR, Schmid CH, Demissie S, Cupples LA, Larson MG, Vasan RS, D’Agostino RB, Karas RH, Mendelsohn ME, Housman DE, Levy D. Variation in estrogen-related genes and cross-sectional and longitudinal blood pressure in the Framingham Heart Study. J Hypertens. 2005;23:2193–200.

    Article  CAS  PubMed  Google Scholar 

  150. Hermida RC, Ayala DE, Mojon A, Fontao MJ, Chayan L, Fernandez JR. Differences between men and women in ambulatory blood pressure thresholds for diagnosis of hypertension based on cardiovascular outcomes. Chronobiol Int. 2013;30:221–32. doi:10.3109/07420528.2012.701487.

    Google Scholar 

  151. Marques-Lopes, J., Lynch, M.K. Van Kempen, T.A., Waters, E.M., Wang, G. Iadecola, C., Pickel*, V.M., and Milner*, T.A.: Female protection from slow-pressor effects of AngII involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin- 1A receptors. *Co-principal investigators. Synapse 69: 148–165 (2015).

    Google Scholar 

Download references

Acknowledgment

Grant Support: NIH grants DA08259, HL098351 (TAM), HL096571 (MJG & TAM), T32 DA007274 (TVK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey A. Van Kempen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Kempen, T.A., Marques-Lopes, J., Glass, M.J., Milner, T.A. (2016). Sex Differences in Neural Regulation of Hypertension. In: Girouard, H. (eds) Hypertension and the Brain as an End-Organ Target. Springer, Cham. https://doi.org/10.1007/978-3-319-25616-0_10

Download citation

Publish with us

Policies and ethics