Skip to main content

Matched Filter Properties of Infrared Receptors Used for Fire and Heat Detection in Insects

  • Chapter
  • First Online:
The Ecology of Animal Senses

Abstract

About 25 insect species are attracted by forest fires and thus can be found on freshly burnt areas after fires. In three genera of pyrophilous beetles and one genus of pyrophilous bugs, infrared (IR) receptors have been discovered. From a technical point of view, insect IR receptors can be classified into two classes: bolometer-like sensors innervated by thermoreceptors and so-called photomechanic sensors which are innervated by mechanoreceptors. Despite of their different functional principles, insect IR receptors all show the same built-in filter properties. Remarkably, these filters were already preset by the absorption spectra of the gases in the atmosphere and the chemical composition of the insect cuticle. The atmospheric windows can be regarded as valuable filters (Filter 1) because emission maxima of relevant IR sources like fires or warm-blooded creatures are located within the MW(mid-wavelength)IR and LW(long wavelength)IR windows. Filter 2 is given by cuticular absorption. Insect cuticle can be regarded as a composite material consisting of biopolymers that show strong IR absorption bands in the MWIR. Because both filters perfectly match, an IR-sensitive pyrophilous insect is able to efficiently sense MWIR radiation emitted by a forest fire. Thus, filters could be used without further modifications enabling the underlying sensory cells to perceive a maximum of temperature increase and/or thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Zarazaga M, Sánchez-Ruiz M, Sánchez-Ruiz A (2003) Una nueva familia de Coleoptera para España: Acanthocnemidae. Bol Soc Entomológica Aragonesa 32:179–180

    Google Scholar 

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo-and hygroreceptors. Annu Rev Entomol 30(1):273–295

    Article  Google Scholar 

  • Amemiya F, Ushiki T, Goris RC, Atobe Y, Kusunoki T (1996) Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings. Anat Rec 246(1):135–146. doi:10.1002/(SICI)1097-0185(199609)

    Article  CAS  PubMed  Google Scholar 

  • Apel K-H (1991) Die Kiefernprachtkäfer. Merkblatt Nr. 50. Forschungsanstalt für Forst- und Holzwirtschaft, Eberswalde

    Google Scholar 

  • Baena M, Torres JL (2013) Notes on the biology and Iberian distribution of Aradus flavicornis (Dalmann, 1823) (Hemiptera, Heteroptera, Aradidae). Bol Asoc Esp Entomol 37(3–4):277–284

    Google Scholar 

  • Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101, doi:http://dx.doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  • Bellamy CL (2008) A world catalogue and bibliography of the jewel beetles (Coleoptera: Buprestoidea), vol 3, Buprestinae: Pterobothrini through Agrilinae: Rhaeboscelina. Faunistica. Pensoft, Sofia

    Google Scholar 

  • Bernard J (1974) Etude électrophysiologique de récepteurs impliqués dans l’orientation vers l’hote et dans l’acte hématophage chez une Hémiptère: Triatoma infestans. Dissertation, University of Rennes

    Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394, doi:http://dx.doi.org/10.1016/j.tree.2005.04.025

    Article  PubMed  Google Scholar 

  • Bowmaker J, Hunt D (2006) Evolution of vertebrate visual pigments. Curr Biol 16(13):R484–R487. doi:10.1016/j.cub.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  • Budzier H, Gerlach G (2011) Thermal infrared sensors. Wiley, Chichester

    Book  Google Scholar 

  • Bullock TH, Barrett R (1968) Radiant heat reception in snakes. Commun Behav Biol 1:19–29

    Google Scholar 

  • Bullock TH, Fox W (1957) The anatomy of the infra-red sense organ in the facial pit of pit vipers. Q J Microsc Sci 3(42):219–234

    Google Scholar 

  • Champion GC (1918) A note on the habits of a Melanophila (Buprestidae) and other Indian Coleoptera. Entomol Mon Mag 54:199–200

    Google Scholar 

  • Champion GC (1922) The geographical distribution and synonomy of the dasytid-beetle Acanthocnemus nigricans Hope (= ciliatus Perris). Entomol Mon Mag 58:77–79

    Google Scholar 

  • Chapman RF (1998) The insects: structure and function, 4th edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • D’Amico A, Di Natale C, Castro FL, Iarossi S, Catini A, Martinelli E (2008) Volatile compounds detection by IR acousto-optic detectors. In: Byrnes J (ed) Unexploded ordnance detection and mitigation. Springer, Ciocco, pp 21–59

    Google Scholar 

  • Deyrup M, Mosley JG (2004) Natural history of the flat bug Aradus glacilicornis in fire-killed pines (Heteroptera: Aradidae). Fla Entomol 87(1):79–81. doi:10.1653/0015-4040(2004)087[0079:NHOTFB]2.0.CO;2

    Article  Google Scholar 

  • Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber AY, Hynninen PH (1998) Dragon fish see using chlorophyll. Nature 393(6684):423–424. doi:10.1038/30871

    Article  CAS  Google Scholar 

  • Ebert J, Westhoff G (2006) Behavioural examination of the infrared sensitivity of rattlesnakes (Crotalus atrox). J Comp Physiol A 192(9):941–947. doi:10.1007/s00359-006-0131-8

    Article  CAS  Google Scholar 

  • Evans WG (1964) Infra-red receptors in Melanophila acuminata DeGeer. Nature 202(4928):211–211

    Google Scholar 

  • Evans WG (1966a) Morphology of the infrared sense organ of Melanophila acuminata (Buprestidae: Coleoptera). Ann Entomol Soc Am 59:873–877

    Article  Google Scholar 

  • Evans WG (1966b) Perception of infrared radiation from forest fires by Melanophila acuminata de Geer (Buprestidae, Coleoptera). Ecology 47(6):1061–1065. doi:10.2307/1935658

    Article  Google Scholar 

  • Evans HF, Moraal LG, Pajares JA (2007) Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 447–474

    Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. In: Evans PD (ed) Advances in insect physiology, vol 27. Academic, San Diego, pp 1–228

    Google Scholar 

  • French AS (1992) Mechanotransduction. Annu Rev Physiol 54(1):135–152. doi:10.1146/annurev.ph.54.030192.001031

    Article  CAS  PubMed  Google Scholar 

  • Froeschner RC (1988) Family Aradidae Spinola 1837 (=Dysodiidae Reuter, 1912; Meziridae Oshanin, 1908), the flat bugs. In: Henry TJ, Froeschner RC (eds) Catalog of the Heteroptera, or true bugs, of Canada and the United States. E. J. Brill Co., New York, pp 29–46

    Google Scholar 

  • Gaussorgues G (1994) Infrared thermography, vol 5, Microwave technology. Chapman & Hall, London

    Book  Google Scholar 

  • Gingl E, Tichy H (2001) Infrared sensitivity of thermoreceptors. J Comp Physiol A Sens Neural Behav Physiol 187(6):467–475

    Article  CAS  Google Scholar 

  • Göpfert MC, Robert D (2001) Active auditory mechanics in mosquitoes. Proc R Soc Lond Ser B Biol Sci 268(1465):333–339. doi:10.1098/rspb.2000.1376

    Article  Google Scholar 

  • Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci 100(9):5514–5519. doi:10.1073/pnas.0737564100

    Article  PubMed  PubMed Central  Google Scholar 

  • Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sanchez EE, Perez JC, Weissman JS, Julius D (2010) Molecular basis of infrared detection by snakes. Nature 464(7291):1006–1011. doi:10.1038/nature08943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gracheva EO, Cordero-Morales JF, Gonzalez-Carcacia JA, Ingolia NT, Manno C, Aranguren CI, Weissman JS, Julius D (2011) Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476(7358):88–91. doi:10.1038/nature10245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerenstein PG, Lazzari CR (2009) Host-seeking: how triatomines acquire and make use of information to find blood. Acta Trop 110:148–158

    Article  PubMed  Google Scholar 

  • Hawkeswood TJ (2007) Review of the biology of the genus Merimna Saunders, 1868 (Coleoptera: Buprestidae). Calodema 9:12–13

    Google Scholar 

  • Hawkeswood TJ, Peterson M (1982) A review of the larval host records for Australian jewel beetels (Coleoptera: Buprestidae). Vic Nat (Blackburn) 99:240–251

    Google Scholar 

  • Heiss E, Pericart J, de France F (2007) Hemiptères Aradidae Piesmatidae et Dipsocoromorphes Euro-mediterranéens, vol 91, Faune de France. Fédération Francaise des Sociétés de Sciences Naturelles, Paris

    Google Scholar 

  • Herzberg H, Huber K-P (1950) Molecular spectra and molecular structure. I. Spectra of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  • Hesse M, Meier H, Zeeh B (1995) Spektroskopische Methoden in der organischen Chemie, 5th edn. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Horion A (1955) Faunistik der mitteleuropäischen Käfer. 4, Sternoxia (Buprestidæ), Fossipedes, Macrodactylia, Brachymera. In: Entomologische Arbeiten aus dem Museum G. Frey, Sonderband. Selbstverlag, München

    Google Scholar 

  • Insausti TC, Lazzari CR, Campanucci VA (1999) Neurobiology of behaviour. A morphology of the nervous system and sense organs. In: Carcavallo RU, Giron IG, Jurberg J, Lent H (eds) Atlas of chagas disease vectors in America, vol 3. Editoria Fiocruz, Rio de Janeiro, pp 1017–1051

    Google Scholar 

  • Johansson T, Hjältén J, Stenbacka F, Dynesius M (2010) Responses of eight boreal flat bug (Heteroptera: Aradidae) species to clear-cutting and forest fire. J Insect Conserv 14(1):3–9. doi:10.1007/s10841-009-9218-1

    Article  Google Scholar 

  • Kahl T, Bousack H, Schneider ES, Schmitz H (2014) Infrared receptors of pyrophilous jewel beetles as model for new infrared sensor. Sens Rev 34(1):123–134

    Google Scholar 

  • Kitchin DR (2009) Notes on the biology of Merimna atrata (Gory & Laporte) (Coleoptera: Buprestidae). Aust Entomol 36(1):1–2

    Google Scholar 

  • Kovalenko YN (2011) Acanthocnemidae (Coleoptera), a family of beetles new to Russia. Zoosystematica Rossica 20(1):71–73

    Google Scholar 

  • Kreiss E-J, Schmitz A, Schmitz H (2005) Morphology of the prothoracic discs and associated sensilla of Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Arthropod Struct Dev 34(4):419–428. doi:10.1016/j.asd.2005.06.001

    Article  Google Scholar 

  • Kreiss E-J, Schmitz H, Gebhardt M (2007) Electrophysiological characterisation of the infrared organ of the Australian “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). J Comp Physiol A Sens Neural Behav Physiol 193(7):729–739

    Article  CAS  Google Scholar 

  • Kürten L, Schmidt U (1982) Thermoperception in the common vampire bat (Desmodus rotundus). J Comp Physiol 146(2):223–228. doi:10.1007/bf00610241

    Article  Google Scholar 

  • Kürten L, Schäfer K, Schmidt U (1984a) Wärmewahrnehmung bei der Vampirfledermaus Desmodus rotundus – Verhaltens- und elektrophysiologische Untersuchungen. Verh Dtsch Ges Pathol 77:303

    Google Scholar 

  • Kürten L, Schmidt U, Schäfer K (1984b) Warm and cold receptors in the nose of the vampire bat Desmodus rotundus. Naturwissenschaften 71(6):327–328. doi:10.1007/BF00396621

    Article  PubMed  Google Scholar 

  • Lappalainen H, Simola H (1998) The fire-adapted flatbug Aradus laeviusculus Reuter (Heteroptera, Aradidae) rediscovered in Finland (North Karelia, Koli National Park). Entomol Fenn 9(1):3–4

    Google Scholar 

  • Lazzari CR, Núñez J (1989) The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans. J Insect Physiol 35(6):525–529, doi:http://dx.doi.org/10.1016/0022-1910(89)90060-7

    Article  Google Scholar 

  • Lazzari C, Wicklein M (1994) The cave-like sense organ in the antennae of Triatominae bugs. Mem Inst Oswaldo Cruz 89(4):643–648

    Article  Google Scholar 

  • Liberti G (2009) The Dasytidae (Coleoptera) of Sardinia. Zootaxa 2318:339–385

    Google Scholar 

  • Linsley EG (1933) Some observations on the swarming of Melanophila. Pan Pac Entomol 9:138

    Google Scholar 

  • Linsley EG (1943) Attraction of Melanophila beetles by fire and smoke. J Econ Entomol 36(2):341–342

    Article  CAS  Google Scholar 

  • Mainz T, Schmitz A, Schmitz H (2004) Variation in number and differentiation of the abdominal infrared receptors in the Australian ‘fire-beetle’ Merimna atrata (Coleoptera, Buprestidae). Arthropod Struct Dev 33(4):419–430

    Article  PubMed  Google Scholar 

  • Manee AH (1913) Observations on Buprestidae at Southern Pines, North Carolina. Entomol News 24:167–171

    Google Scholar 

  • Mayor A (2007) Acanthocnemidae; Prionoceridae; Melyridae; Dasytidae. In: Löbl I, Smetana A (eds) Catalogue of Palaearctic Coleoptera, vol 4, Elateroidea – Derodontoidea – Bostrichoidea – Lymexyloidea – Cleroidea – Cucujoidea. Apollo Books, Stenstrup, pp 384–415

    Google Scholar 

  • Meuthen D, Rick IP, Thünken T, Baldauf SA (2012) Visual prey detection by near-infrared cues in a fish. Naturwissenschaften 99:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Mhatre N, Robert D (2013) A tympanal insect ear exploits a critical oscillator for active amplification and tuning. Curr Biol 23:1–6, doi:http://dx.doi.org/10.1016/j.cub.2013.08.028

    Article  Google Scholar 

  • Michelsen A, Larsen ON (1985) Hearing and sound. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon Press, New York, pp 495–556

    Google Scholar 

  • Molenaar GJ (1992) Anatomy and physiology of infrared sensitivity of snakes. In: Gans C, Ulinski PS (eds) Biology of the reptilia, vol 17, Biology of the reptilia. University of Chicago, Chicago, pp 367–453

    Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin

    Book  Google Scholar 

  • Paczkowski S, Paczkowska M, Dippel S, Schulze N, Schütz S, Sauerwald T, Weiß A, Bauer M, Gottschald J, Kohl C-D (2013) The olfaction of a fire beetle leads to new concepts for early fire warning systems. Sensors Actuators B 183(0):273–282, doi:http://dx.doi.org/10.1016/j.snb.2013.03.123

    Article  CAS  Google Scholar 

  • Poulton EB (1915) The habits of the Australian buprestid “fire-beetle” Merimna atrata, (Laporte and Gory). Trans Entomol Soc Lond Part 1. (Proceedings):iii–iv

    Google Scholar 

  • Ricksecker LE (1885) Habits of some California beetles. Entomol Am 1:96–98

    Google Scholar 

  • Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Technol 43(3–5):187–210

    Article  Google Scholar 

  • Saint-Germain M, Drapeau P, Buddle CM (2008) Persistence of pyrophilous insects in fire-driven boreal forests: population dynamics in burned and unburned habitats. Divers Distrib 14(4):713–720. doi:10.1111/j.1472-4642.2007.00452.x

    Article  Google Scholar 

  • Schmitz H, Bleckmann H (1997) Fine structure and physiology of the infrared receptor of beetles of the genus Melanophila (Coleoptera: Buprestidae). Int J Insect Morphol Embryol 26(3–4):205–215

    Article  Google Scholar 

  • Schmitz H, Bleckmann H (1998) The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). J Comp Physiol A 182(5):647–657. doi:10.1007/s003590050210

    Article  Google Scholar 

  • Schmitz H, Bousack H (2012) Modelling a historic oil-tank fire allows an estimation of the sensitivity of the infrared receptors in pyrophilous Melanophila beetles. PLoS One 7(5), e37627. doi:10.1371/journal.pone.0037627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz H, Schmitz A (2002) Australian fire-beetles. Landscope 18(1):36–41

    Google Scholar 

  • Schmitz H, Trenner S (2003) Electrophysiological characterization of the multipolar thermoreceptors in the“ fire-beetle” Merimna atrata and comparison with the infrared sensilla of Melanophila acuminata (both Coleoptera, Buprestidae). J Comp Physiol A Sens Neural Behav Physiol 189(9):715–722

    Article  CAS  Google Scholar 

  • Schmitz H, Bleckmann H, Murtz M (1997) Infrared detection in a beetle. Nature 386(6627):773–774

    Article  CAS  Google Scholar 

  • Schmitz H, Schmitz A, Bleckmann H (2000a) A new type of infrared organ in the Australian“ fire-beetle” Merimna atrata (Coleoptera: Buprestidae). Naturwissenschaften 87(12):542–545

    Article  CAS  PubMed  Google Scholar 

  • Schmitz H, Trenner S, Hofmann MH, Bleckmann H (2000b) The ability of Rhodnius prolixus (Hemiptera; Reduviidae) to approach a thermal source solely by its infrared radiation. J Insect Physiol 46(5):745–751

    Article  CAS  PubMed  Google Scholar 

  • Schmitz H, Schmitz A, Bleckmann H (2001) Morphology of a thermosensitive multipolar neuron in the infrared organ of Merimna atrata (Coleoptera, Buprestidae). Arthropod Struct Dev 30(2):99–111

    Article  CAS  PubMed  Google Scholar 

  • Schmitz H, Schmitz A, Trenner S, Bleckmann H (2002) A new type of insect infrared organ of low thermal mass. Naturwissenschaften 89(5):226–229

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Sehrbrock A, Schmitz H (2007) The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coeloptera; Buprestidae) adduces new insight into the transduction mechanism. Arthropod Struct Dev 36(3):291–303

    Article  PubMed  Google Scholar 

  • Schmitz A, Gebhardt M, Schmitz H (2008) Microfluidic photomechanic infrared receptors in a pyrophilous flat bug. Naturwissenschaften 95(5):455–460. doi:10.1007/s00114-008-0344-5

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Schätzel H, Schmitz H (2010) Distribution and functional morphology of photomechanic infrared sensilla in flat bugs of the genus Aradus (Heteroptera, Aradidae). Arthropod Struct Dev 39(1):17–25. doi:10.1016/j.asd.2009.10.007

    Article  PubMed  Google Scholar 

  • Schneider ES, Schmitz H (2013) Bimodal innervation of the infrared organ of Merimna atrata (Coleoptera, Buprestidae) by thermo- and mechanosensory units. Arthropod Struct Dev 42(2):135–142, doi:http://dx.doi.org/10.1016/j.asd.2012.11.001

    Article  PubMed  Google Scholar 

  • Schneider ES, Schmitz H (2014) Thermomechanical properties of the stimulus transducing cuticle in the infrared organ of Merimna atrata (Coleoptera, Buprestidae). J Morphol 275(9):991–1003. doi:10.1002/jmor.20276

    Article  PubMed  Google Scholar 

  • Schoenlein R, Peteanu L, Mathies R, Shank C (1991) The first step in vision: femtosecond isomerization of rhodopsin. Science 254(5030):412–415. doi:10.1126/science.1925597

    Article  CAS  PubMed  Google Scholar 

  • Sharp WE (1918) Melanophila acuminata in Berkshire. Entomol Mon Mag 54:244–245

    Google Scholar 

  • Shcherbakov D, Knörzer A, Espenhahn S, Hilbig R, Haas U, Blum M (2013) Sensitivity differences in fish offer near-infrared vision as an adaptable evolutionary trait. PLoS One 8(5), e64429. doi:10.1371/journal.pone.0064429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloop KD (1937) A revision of the North American buprestid beetles belonging to the genus Melanophila (Coleoptera, Buprestidae), vol 7. University of California Publications in Entomology, Berkeley

    Google Scholar 

  • Stark KB, Gallas JM, Zajac GW, Golab JT, Gidanian S, McIntire T, Farmer PJ (2005) Effect of stacking and redox state on optical absorption spectra of melanins−Comparison of theoretical and experimental results. J Phys Chem B 109(5):1970–1977. doi:10.1021/jp046710z

    Article  CAS  PubMed  Google Scholar 

  • Terashima S-I, Goris RC, Katsuki Y (1970) Structure of warm fiber terminals in the pit membrane of vipers. J Ultrastruct Res 31(5–6):494–506

    Article  CAS  PubMed  Google Scholar 

  • Thurm U, Erler G, Gödde J, Kastrup H, Keil T, Völker W, Vohwinkel B (1983) Cilia specialized for mechanoreception. J Submicrosc Cytol Pathol 15(1):151–155

    Google Scholar 

  • Valcárcel JP, Piloña FP (2009) NOTA BREVE/SHORT NOTE Nota adicional sobre la presencia de Acanthocnemus nigricans (Hope, 1843) en la Península Ibérica. Arq Entomolóxicos Galegos 2:21

    Google Scholar 

  • VanDyke EC (1926) Buprestid swarming. Pan Pac Entomol 3:41

    Google Scholar 

  • Vondran T, Apel K-H, Schmitz H (1995) The infrared receptor of Melanophila acuminata De Geer (Coleoptera: Buprestidae): ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor. Tissue Cell 27(6):645–658

    Article  CAS  PubMed  Google Scholar 

  • Wikars L-O (1992) Skogsbränder och insekter. Entomol Tidskr 113(4):1–12

    Google Scholar 

  • Wikars L-O (1997) Effects of forest fire and the ecology of fire-adapted insects. Uppsala University, Sweden

    Google Scholar 

  • Wyniger D, Moretti M, Duelli P (2002) Aradus lugubris Fallen, 1807 (Hemiptera, Heteroptera, Aradidae) in a chestnut forest of Southern Switzerland after a fire experiment. Mitt Schweiz Entomol Ges 75(1/2):61–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmitz, H., Schmitz, A., Schneider, E.S. (2016). Matched Filter Properties of Infrared Receptors Used for Fire and Heat Detection in Insects. In: von der Emde, G., Warrant, E. (eds) The Ecology of Animal Senses. Springer, Cham. https://doi.org/10.1007/978-3-319-25492-0_8

Download citation

Publish with us

Policies and ethics