Skip to main content

Photoelectrochemical Approach for Water Splitting

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

The splitting of liquid water into hydrogen and water via photoelectrochemical (PEC) approaches is described. If sunlight is used as the illumination source, the overall process provides a means to convert solar power into chemical energy. PEC water splitting is the direct coupling of the following processes: (1) absorption of solar light in a material and the creation of electrons and holes, (2) transport of electrons and holes to the absorber/water interface, and (3) evolution of hydrogen from the electrons and oxygen from the holes, often with the assistance of catalysts. The distinctions between this process and the related approach of coupling photovoltaic (PV) elements to hydrogen evolution (HER) and oxygen evolution (OER) catalysts will be discussed. The history of research on PEC water splitting dating back to its discovery in the early 1970s is summarized. The basic design principles of PEC water splitting device, with an emphasis on the type and number of PV absorbing elements are discussed and state of the art demonstrations are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciamician G (1912) The photochemistry of the future. Science 36:385–394. doi:10.1126/science.36.926.385

    Article  Google Scholar 

  2. Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 15:1–23. doi:10.1016/j.rser.2010.07.014

    Article  Google Scholar 

  3. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  Google Scholar 

  4. Turner JA (2004) Sustainable hydrogen production. Science (80-) 305:972–974. doi:10.1126/science.1103197

    Google Scholar 

  5. Barbir F (2005) PEM fuel cells: theory and practice. Theory Pract. doi:10.1016/B978-012078142-3/50013-6

    Google Scholar 

  6. Wang Y, Chen KS, Mishler J et al (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007. doi:10.1016/j.apenergy.2010.09.030

    Article  Google Scholar 

  7. Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36:4356–4362. doi:10.1016/j.enpol.2008.09.036

    Article  Google Scholar 

  8. Evans A, Strezov V, Evans TJ (2012) Assessment of utility energy storage options for increased renewable energy penetration. Renew Sustain Energy Rev 16:4141–4147. doi:10.1016/j.rser.2012.03.048

    Article  Google Scholar 

  9. Lewis NS (2001) Frontiers of research in photoelectrochemical solar energy conversion. J Electroanal Chem 508:1–10. doi:10.1016/S0022-0728(01)00399-0

    Article  Google Scholar 

  10. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446

    Article  Google Scholar 

  11. Nielander AC, Shaner MR, Papadantonakis KM et al (2015) A taxonomy for solar fuels generators. Energy Environ Sci 8:16–25. doi:10.1039/C4EE02251C

    Article  Google Scholar 

  12. Bak T, Nowotny J, Rekas M, Sorrell C (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy 27:991–1022. doi:10.1016/S0360-3199(02)00022-8

    Article  Google Scholar 

  13. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661. doi:10.1021/jz1007966

    Article  Google Scholar 

  14. Kudo A (2007) Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int J Hydrog Energy 32:2673–2678. doi:10.1016/j.ijhydene.2006.09.010

    Article  Google Scholar 

  15. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278. doi:10.1039/b800489g

    Article  Google Scholar 

  16. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570. doi:10.1021/cr1001645

    Article  Google Scholar 

  17. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54. doi:10.1021/cm7024203

    Article  Google Scholar 

  18. Chen Z, Jaramillo TF, Deutsch TG et al (2010) Review: accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 25:3–16. doi:10.1557/JMR.2010.0020

    Article  Google Scholar 

  19. Dotan H, Mathews N, Hisatomi T et al (2014) On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J Phys Chem Lett 5:3330–3334. doi:10.1021/jz501716g

    Article  Google Scholar 

  20. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37. doi:10.1038/238037a0

    Article  Google Scholar 

  21. Wrighton MS, Ellis AB, Wolczanski PT et al (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98:2774–2779. doi:10.1021/ja00426a017

    Article  Google Scholar 

  22. Nozik AJ (1976) p-n photoelectrolysis cells. Appl Phys Lett 29:150–153. doi:10.1063/1.89004

    Article  Google Scholar 

  23. Kainthla RC (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Electrochem Soc 134:841. doi:10.1149/1.2100583

    Article  Google Scholar 

  24. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science (80-) 280:425–427. doi:10.1126/science.280.5362.425

    Google Scholar 

  25. Golbeck JH (2006) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht

    Google Scholar 

  26. Wydrzynski T, Satoh K (2006) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Photosynth Res. doi:10.1007/s11120-006-9035-2

    Google Scholar 

  27. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. doi:10.1063/1.1736034

    Article  Google Scholar 

  28. Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316:495–500. doi:10.1038/316495a0

    Article  Google Scholar 

  29. Weber M, Dignam M (1986) Splitting water with semiconducting photoelectrodes—Efficiency considerations. Int J Hydrogen Energy 11:225–232. doi:10.1016/0360-3199(86)90183-7

    Article  Google Scholar 

  30. Licht S (2001) Multiple band gap semiconductor/electrolyte solar energy conversion. J Phys Chem B 105:6281. doi:10.1021/jp010552j

    Article  Google Scholar 

  31. Döscher H, Geisz J, Deutsch T, Turner J (2014) Sunlight absorption in water−efficiency and design implications for photoelectrochemical devices. Energy Environ Sci 7:2951–2956. doi:10.1039/c4ee01753f

    Article  Google Scholar 

  32. Hu S, Xiang C, Haussener S et al (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993

    Article  Google Scholar 

  33. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi:10.1038/35104607

    Article  Google Scholar 

  34. Chen S, Wang L-W (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666. doi:10.1021/cm302533s

    Article  Google Scholar 

  35. Walukiewicz W (2001) Intrinsic limitations to the doping of wide-gap semiconductors. Phys B Condens Matter 302–303:123–134. doi:10.1016/S0921-4526(01)00417-3

    Article  Google Scholar 

  36. Van de Walle CG, Neugebauer J (2003) Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423:626–628. doi:10.1038/nature01665

    Article  Google Scholar 

  37. Fujishima A (1975) Hydrogen production under sunlight with an electrochemical photocell. J Electrochem Soc 122:1487. doi:10.1149/1.2134048

    Article  Google Scholar 

  38. Yoneyama H, Sakamoto H, Tamura H (1975) A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction. Electrochim Acta 20:341–345. doi:10.1016/0013-4686(75)90016-X

    Article  Google Scholar 

  39. Ohashi K, McCann J, Bockris JO (1977) Stable photoelectrochemical cells for the splitting of water. Nature 266:610. doi:10.1038/266610a0

    Article  Google Scholar 

  40. Kohl PA, Frank SN, Bard AJ (1977) Semiconductor electrodes. J Electrochem Soc 124:225. doi:10.1149/1.2133270

    Article  Google Scholar 

  41. Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem Interfacial Electrochem 82:133–143. doi:10.1016/S0022-0728(77)80253-2

    Article  Google Scholar 

  42. Delahoy AE, Gau SC, Murphy OJ et al (1985) A one-unit photovoltaic electrolysis system based on a triple stack of amorphous silicon (pin) cells. Int J Hydrogen Energy 10:113–116. doi:10.1016/0360-3199(85)90043-6

    Article  Google Scholar 

  43. Lin GH, Kapur M, Kainthla RC, Bockris JOM (1989) One step method to produce hydrogen by a triple stack amorphous silicon solar cell. Appl Phys Lett 55:386–387. doi:10.1063/1.101879

    Article  Google Scholar 

  44. Gramaccioni C, Selvaggi A, Galluzzi F (1993) Thin film multi-junction solar cell for water photoelectrolysis. Electrochim Acta 38:111–113. doi:10.1016/0013-4686(93)80016-S

    Article  Google Scholar 

  45. Rocheleau RE, Miller EL, Misra A (1998) High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12:3–10. doi:10.1021/ef9701347

    Article  Google Scholar 

  46. Khaselev O, Bansal A, Turner JA (2001) High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energy 26:127–132. doi:10.1016/S0360-3199(00)00039-2

    Article  Google Scholar 

  47. Reece SY, Hamel JA, Sung K et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science (80-) 334:645–648. doi:10.1126/science.1209816

    Google Scholar 

  48. Appleby AJ, Delahoy AE, Gau SC et al (1985) An amorphous silicon-based one-unit photovoltaic electrolyzer. Energy 10:871–876. doi:10.1016/0360-5442(85)90120-3

    Article  Google Scholar 

  49. Sakai Y, Sugahara S, Matsumura M et al (1988) Photoelectrochemical water splitting by tandem type and heterojunction amorphous silicon electrodes. Can J Chem 66:1853–1856. doi:10.1139/v88-299

    Article  Google Scholar 

  50. Licht S, Wang B, Mukerji S et al (2000) Efficient solar water splitting, exemplified by RuO 2—catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B 104:8920–8924. doi:10.1021/jp002083b

    Article  Google Scholar 

  51. Brillet J, Yum J-H, Cornuz M et al (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Phot 6:824–828

    Article  Google Scholar 

  52. Abdi FF, Han L, Smets AHM et al (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195. doi:10.1038/ncomms3195

    Article  Google Scholar 

  53. Han L, Abdi FF, van de Krol R et al (2014) Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar Cells. ChemSusChem 7:2832–2838. doi:10.1002/cssc.201402456

    Article  Google Scholar 

  54. Sabba D, Mulmudi HK et al (2015) Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett 150330053659007. doi:10.1021/acs.nanolett.5b00616

    Google Scholar 

  55. Bornoz P, Abdi FF, Tilley SD et al (2014) A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118:16959–16966. doi:10.1021/jp500441h

    Article  Google Scholar 

  56. Liu C, Tang J, Chen HM et al (2013) A fully integrated nanosystem of semiconductor nanowires for direct solar water Splitting. Nano Lett 13:2989–2992. doi:10.1021/nl401615t

    Article  Google Scholar 

  57. Shaner MR, Fountaine KT, Ardo S et al (2014) Photoelectrochemistry of core–shell tandem junction n–p+ -Si/n-WO3 microwire array photoelectrodes. Energy Environ Sci 7:779. doi:10.1039/c3ee43048k

    Article  Google Scholar 

  58. Rongé J, Bosserez T, Martel D et al (2014) Monolithic cells for solar fuels. Chem Soc Rev 43:7963–7981. doi:10.1039/c3cs60424a

    Article  Google Scholar 

  59. Ager JW III, Shaner M, Walczak K et al (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci. doi:10.1039/C5EE00457H

    Google Scholar 

  60. Gaillard N, Chang Y, Kaneshiro J et al (2010) Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’i. Proc SPIE 7770:77700 V–77700 V–14. doi:10.1117/12.860970

  61. Fujii K, Nakamura S, Sugiyama M et al (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrogen Energy 38:14424–14432. doi:10.1016/j.ijhydene.2013.07.010

    Article  Google Scholar 

  62. Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18 %. Int J Hydrogen Energy 32:3248–3252. doi:10.1016/j.ijhydene.2007.04.036

    Article  Google Scholar 

  63. Luo J, Im J-H, Mayer MT et al (2014) Water photolysis at 12.3 % efficiency via perovskite photovoltaics and earth-abundant catalysts. Science (80-) 345:1593–1596. doi:10.1126/science.1258307

    Google Scholar 

  64. Jacobsson TJ, Fjallstrom V, Sahlberg M et al (2013) A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10 % solar-to-hydrogen efficiency. Energy Environ Sci 6:3676–3683. doi:10.1039/C3EE42519C

    Article  Google Scholar 

  65. Cox CR, Lee JZ, Nocera DG, Buonassisi T (2014) Ten-percent solar-to-fuel conversion with nonprecious materials. Proc Natl Acad Sci 111:14057–14061. doi:10.1073/pnas.1414290111

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel W. Ager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ager, J.W. (2016). Photoelectrochemical Approach for Water Splitting. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics