Skip to main content

Branching Random Walks and Martingales

  • Chapter
  • First Online:
Branching Random Walks

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2151))

Abstract

The Galton–Watson branching process counts the number of particles in each generation of a branching process. In this chapter, we produce an extension, in the spatial sense, by associating each individual of the branching process with a random variable. This results in a branching random walk. We present several martingales that are naturally related to the branching random walk, and study some elementary properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(\mathbf{P}\{\sum _{\vert x\vert =1}\mathbf{1}_{\{V (x)>0\}} > 0\} > 0\) , then the condition that ψ(t) ≤ 0 for some t > 0 is also necessary to have \(\inf _{\vert x\vert =n}V (x) \rightarrow \infty \), P -a.s. See Biggins [52].

  2. 2.

    It is always possible, by means of a simple translation, to make a branching random walk satisfy ψ(1) = 0 as long as \(\psi (1) < \infty \). The condition ψ′(1) ≤ 0 is more technical: It is to guarantee the existence of the forthcoming function Φ; see the paragraph below.

  3. 3.

    In Proposition 3.4 and Lemma 3.5 below, we simply say that Φ is a Laplace transform satisfying (3.1).

  4. 4.

    In fact, it is also unique, up to a multiplicative constant in the argument. See Biggins and Kyprianou [56].

  5. 5.

    In [157], Helly’s selection principle is stated for functions on a compact interval. We apply it to each of the intervals [0, n], and then conclude by a diagonal argument (i.e., taking the diagonal elements in a double array).

References

  1. E. Aïdékon, Convergence in law of the minimum of a branching random walk. Ann. Probab. 41, 1362–1426 (2013). ArXiv version ArXiv:1101.1810

    Google Scholar 

  2. G. Alsmeyer, E. Damek, S. Mentemeier, Precise tail index of fixed points of the two-sided smoothing transform, in Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics and Statistics, vol. 53 (Springer, Heidelberg, 2013), pp. 229–251

    Google Scholar 

  3. J. Berestycki, Topics on branching Brownian motion (2015+). Lecture notes available at: http://www.stats.ox.ac.uk/~berestyc/articles.html

  4. J.D. Biggins, Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977)

    Article  MathSciNet  Google Scholar 

  5. J.D. Biggins, Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, 137–151 (1992)

    Article  MathSciNet  Google Scholar 

  6. J.D. Biggins, Lindley-type equations in the branching random walk. Stoch. Process. Appl. 75, 105–133 (1998)

    Article  MathSciNet  Google Scholar 

  7. J.D. Biggins, D.R. Grey, Continuity of limit random variables in the branching random walk. J. Appl. Probab. 16, 740–749 (1979)

    Article  MathSciNet  Google Scholar 

  8. J.D. Biggins, A.E. Kyprianou, Seneta-Heyde norming in the branching random walk. Ann. Probab. 25, 337–360 (1997)

    Article  MathSciNet  Google Scholar 

  9. J.D. Biggins, A.E. Kyprianou, Measure change in multitype branching. Adv. Appl. Probab. 36, 544–581 (2004)

    Article  MathSciNet  Google Scholar 

  10. J.D. Biggins, A.E. Kyprianou, Fixed points of the smoothing transform: the boundary case. Electron. J. Probab. 10, 609–631 (2005). Paper No. 17

    Google Scholar 

  11. D. Buraczewski, On tails of fixed points of the smoothing transform in the boundary case. Stoch. Process. Appl. 119, 3955–3961 (2009)

    Article  MathSciNet  Google Scholar 

  12. D. Buraczewski, E. Damek, S. Mentemeier, M. Mirek, Heavy tailed solutions of multivariate smoothing transforms. Stoch. Process. Appl. 123, 1947–1986 (2013)

    Article  MathSciNet  Google Scholar 

  13. B. Chauvin, Product martingales and stopping lines for branching Brownian motion. Ann. Probab. 19, 1195–1205 (1991)

    Article  MathSciNet  Google Scholar 

  14. R.A. Doney, A limit theorem for a class of supercritical branching processes. J. Appl. Probab. 9, 707–724 (1972)

    Article  MathSciNet  Google Scholar 

  15. R. Durrett, T.M. Liggett, Fixed points of the smoothing transformation. Z. Wahrsch. Gebiete 64, 275–301 (1983)

    Article  MathSciNet  Google Scholar 

  16. K.J. Falconer, Cut-set sums and tree processes. Proc. Am. Math. Soc. 101, 337–346 (1987)

    Article  MathSciNet  Google Scholar 

  17. Y. Guivarc’h, Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Probab. Stat. 26, 261–285 (1990)

    MathSciNet  Google Scholar 

  18. S.C. Harris, Travelling-waves for the FKPP equation via probabilistic arguments. Proc. R. Soc. Edinb. Sect. A 129, 503–517 (1999)

    Article  Google Scholar 

  19. R. Holley, T.M. Liggett, Generalized potlatch and smoothing processes. Z. Wahrsch. Gebiete 55, 165–195 (1981)

    Article  MathSciNet  Google Scholar 

  20. A. Iksanov, Z. Kabluchko, A central limit theorem and a law of the iterated logarithm for the Biggins martingale of the supercritical branching random walk (2015+). ArXiv:1507.08458

    Google Scholar 

  21. A. Iksanov, M. Meiners, Exponential rate of almost-sure convergence of intrinsic martingales in supercritical branching random walks. J. Appl. Probab. 47, 513–525 (2010)

    Article  MathSciNet  Google Scholar 

  22. P. Jagers, General branching processes as Markov fields. Stoch. Process. Appl. 32, 183–212 (1989)

    Article  MathSciNet  Google Scholar 

  23. A. Joffe, A new martingale in branching random walk. Ann. Appl. Probab. 3, 1145–1150 (1993)

    Article  MathSciNet  Google Scholar 

  24. J.-P. Kahane, J. Peyrière, Sur certaines martingales de Mandelbrot. Adv. Math. 22, 131–145 (1976)

    Article  Google Scholar 

  25. H. Kesten, B.P. Stigum, A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Stat. 37, 1211–1223 (1966)

    Article  MathSciNet  Google Scholar 

  26. A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis (Dover, New York, 1970)

    Google Scholar 

  27. A.E. Kyprianou, Slow variation and uniqueness of solutions to the functional equation in the branching random walk. J. Appl. Probab. 35, 795–801 (1998)

    Article  MathSciNet  Google Scholar 

  28. A.E. Kyprianou, Martingale convergence and the stopped branching random walk. Probab. Theory Relat. Fields 116, 405–419 (2000)

    Article  MathSciNet  Google Scholar 

  29. A.E. Kyprianou, Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris’ probabilistic analysis. Ann. Inst. H. Poincaré Probab. Stat. 40, 53–72 (2004)

    Article  MathSciNet  Google Scholar 

  30. S.P. Lalley, T. Sellke, A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15, 1052–1061 (1987)

    Article  MathSciNet  Google Scholar 

  31. Q.S. Liu, Fixed points of a generalized smoothing transform and applications to the branching processes. Adv. Appl. Probab. 30, 85–112 (1998)

    Article  Google Scholar 

  32. Q.S. Liu, On generalized multiplicative cascades. Stoch. Process. Appl. 86, 263–286 (2000)

    Article  Google Scholar 

  33. Q.S. Liu, Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stoch. Process. Appl. 95, 83–107 (2001)

    Article  Google Scholar 

  34. R. Lyons, A simple path to Biggins’ martingale convergence for branching random walk, in Classical and Modern Branching Processes, ed. by K.B. Athreya, P. Jagers. IMA Volumes in Mathematics and Its Applications, vol. 84 (Springer, New York, 1997), pp. 217–221

    Google Scholar 

  35. P. Maillard, Speed and fluctuations of N-particle branching Brownian motion with spatial selection (2013+). ArXiv:1304.0562

    Google Scholar 

  36. B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278, 289–292 (1974)

    MathSciNet  Google Scholar 

  37. R.D. Mauldin, S.C. Williams, Random recursive constructions: asymptotic geometric and topological properties. Trans. Am. Math. Soc. 295, 325–346 (1986)

    Article  MathSciNet  Google Scholar 

  38. J. Neveu, Multiplicative martingales for spatial branching processes, in Seminar on Stochastic Processes 1987, ed. by E. Çinlar et al. Progress in Probability and Statistics, vol. 15 (Birkhäuser, Boston, 1988), pp. 223–242

    Google Scholar 

  39. P. Olofsson, Size-biased branching population measures and the multi-type xlnx condition. Bernoulli 15, 1287–1304 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shi, Z. (2015). Branching Random Walks and Martingales. In: Branching Random Walks. Lecture Notes in Mathematics(), vol 2151. Springer, Cham. https://doi.org/10.1007/978-3-319-25372-5_3

Download citation

Publish with us

Policies and ethics