Skip to main content

Applications of Relativistic Kinematics

  • Chapter
  • First Online:
The Special Theory of Relativity

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 3452 Accesses

Abstract

There are in space charged particles, ions and photons of X and γ rays, with energies that may sometimes reach very large values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader may have noticed that we referred to the (one) clock of Ο′ when this is observed by Ο, but to the (many) clocks in his own frame of reference. The same holds in the symmetrical case when Ο′ is making the observations. The reason is a simple one: for each of the observers, all the clocks of his own frame of reference remain synchronized, while the clocks at various points of the frame that is moving relative to him appear to him not to be synchronized, even when they are synchronized in their own frame of reference (Example 3.7).

References

  1. B. Rossi, D.B. Hall, Variation of the rate of decay of mesotrons with momentum. Phys. Rev. 59, 223 (1941). B. Rossi, K. Greisen, J.C. Stearns, D.K. Froman, P.G. Koontz, Further measurements of the mesotron lifetime. Phys. Rev. 61, 675 (1942)

    Google Scholar 

  2. D.H. Frisch, J.H. Smith, Measurement of the relativistic time dilation using μ-mesons. Am. J. Phy. 31(5), 342–355 (1963)

    Article  ADS  Google Scholar 

  3. T. Coan, T. Liu, J. Ye, A compact apparatus for muon lifetime measurement and time dilation demonstration in the undergraduate laboratory. Am. J. Phys. 74, 161–164 (2006)

    Article  ADS  Google Scholar 

  4. J. Bailey, K. Borer, F. Combley, H. Drumm, F. Krienen, F. Lange, E. Picasso, W. von Ruden, F.J.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, Measurements of relativistic time dilatation for positive and negative muons in a circular orbit. Nature 268, 301–5 (1977). J. Bailey, K. Borer, F. Combley, H. Drumm, C. Eck, F.J.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, F. Krienen, F. Lange, G. Lebée, E. McMillan, G. Petrucci, E. Picasso, O. Rúnolfsson, W. von Rüden, R.W. Williams, S. Wojcicki, Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of relativistic time dilation. Nuclear Physics B 150, 1–75 (1979)

    Google Scholar 

  5. G. Sagnac, L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. C. R. Acad. Sci. (Paris), 157, 708–10 (1913). Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant. C. R. Acad. Sci. (Paris), 157, 1410–13 (1913). Effet tourbillonnaire optique. La circulation de l’éther lumineux dans un interférographe tournant. J. Phys. Radium Ser.5, 4, 177–195 (1914)

    Google Scholar 

  6. J.C. Hafele, R.E. Keating, Science 177, 166 (1972), and Science 177, 168 (1972). J.C. Hafele, Relativistic time for terrestrial circumnavigations. Am. J. Phys. 40, 81–85 (1971)

    Google Scholar 

  7. T. Jones, Splitting the Second. The Story of Atomic Time (Institute of Physics Publishing, Bristol and Philadelphia, 2000), p. 137

    Google Scholar 

  8. P. Langevin, L’évolution de l’espace et du temps. Scientia 10, 31–54 (1911)

    Google Scholar 

  9. C. Møller, The Theory of Relativity, 2nd edn. (Clarendon Press, Oxford, 1972), Sect. 8.17, p. 293

    Google Scholar 

  10. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  11. G.P. Fisher, The Thomas precession. Am. J. Phys. 40, 1772 (1972)

    Article  ADS  Google Scholar 

  12. A. Ben-Menahem, Wigner’s rotation revisited. Am. J. Phys. 53, 62 (1985)

    Google Scholar 

  13. (i) L.H. Thomas, The kinematics of an electron with an axis. Phil. Mag. Ser. 7, 3, 1 (1927). (ii) H. Zatzkis, The Thomas precession. J. Frankl. Inst. 269, 268 (1960). (iii) R. Ferraro, M. Thibeault, Generic composition of boosts: an elementary derivation of the Wigner rotation. Eur. J. Phys. 20, 143 (1999). (iv) H. Gelman, Sequences of co-moving Lorentz frames. J. Math. Anal. Appl. 145, 524 (1990). (v) E.G. Peter Rowe, The Thomas precession. Eur. J. Phys. 5, 40 (1984). (vi) C. Møller, The Theory of Relativity, 2nd edn. (Clarendon Press, Oxford, 1972), p. 52. (vii) H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison Wesley, 2002), p. 282. (viii) E.F. Taylor, J.A. Wheeler, Spacetime Physics (W.H. Freeman and Co, San Francisco, 1966), p. 169

    Google Scholar 

  14. L.H. Thomas, Motion of the spinning electron. Nature 117, 514 (1926)

    Article  ADS  Google Scholar 

  15. C.W.F. Everit et al., Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106 (22), 221101 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Christodoulides .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Christodoulides, C. (2016). Applications of Relativistic Kinematics. In: The Special Theory of Relativity. Undergraduate Lecture Notes in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-25274-2_4

Download citation

Publish with us

Policies and ethics