Skip to main content

Photochemical Process of Wood-Thermoplastic Composites

  • Chapter
  • First Online:
Photochemical Behavior of Multicomponent Polymeric-based Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 26))

Abstract

The consumption of wood-plastic composites (WPCs), made from thermoplastics and woody fibers, has registered a significant increase over the past . They have been widely used in a variety of applications. However, when used outdoors, both the woody fibers and the polymer matrix experience photodegradation, which finally shortens their service-life. This chapter traces the history of the use and developments of WPCs in last decades. The photodegradation mechanisms of wood, polymer, and WPCs are discussed next. The chapter addresses last several new methods in improving the durability of WPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordan, J.E.: The New Science of Strong Materials (or Why You Don’t Fall Through the Floor), 2nd edn. Princeton University Press, Princeton, NJ (1988)

    Google Scholar 

  2. Zhu, Y.M.: Progress of the world’s plastics industry in 2013–2014. China Plast. Ind. 43(3), 1–40 (2015)

    Google Scholar 

  3. Gug, J.I., Cacciola, D., Sobkowicz, M.J.: Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Waste Manag. 35, 283–292 (2015)

    Article  Google Scholar 

  4. Caulfield, D.F., Clemons, C., Jacobson, R.E., et al.: Wood thermoplastic composites. In: Roger, R.M. (ed.) Handbook of Wood Chemistry and Wood Composites, p. 365. Taylor & Francis, Boca Raton (2005)

    Google Scholar 

  5. Clemons, C.: Wood-plastic composites in the United States: the interfacing of two industries. For. Prod. J. 52(6), 10–18 (2002)

    Google Scholar 

  6. Faruk, O., Bledzki, A.K., Fink, H.P., et al.: Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299(1), 9–26 (2014)

    Article  Google Scholar 

  7. Principia Partner, Proceedings of 7th International Conference on Wood Fiber-Plastic Composites (and other natural fibers), USDA Forest Products Laboratory, Madison, Wis, USA (2003)

    Google Scholar 

  8. Reddy, M.M., Vivekanandhan, S., Misra, M., et al.: Biobased plastics and bionanocomposites: current status and future opportunities. Prog. Polym. Sci. 38(10), 1653–1689 (2013)

    Article  Google Scholar 

  9. Ashori, A.: Wood-plastic composites as promising green-composites for automotive industries! Bioresour. Technol. 99(11), 4661–4667 (2008)

    Article  Google Scholar 

  10. Jiang, H., Kamdem, D.P.: Development of poly (vinyl chloride)/wood composites. A literature review. J. Vinyl Additive Technol. 10(2), 59–69 (2004)

    Google Scholar 

  11. Clemons, C.: Proceedings of 3rd International Wood and Natural Fiber Composites Symposium, Kassel, Germany (2000)

    Google Scholar 

  12. Bismarck, A., Baltazar-Y-Jimenez, A., Sarlkakis, K.: Green composites as Panacea? Socio-economic aspects of green materials. Environ. Dev. Sustain. 8(3), 445–463 (2006)

    Article  Google Scholar 

  13. Chen, Y., Sun, L., Chiparus, O., Negulescu, I., Yachmenev, V., Warnock, M.: Kenaf/ramie composite for automotive headliner. J. Polym. Environ. 13(2), 107–114 (2006)

    Article  Google Scholar 

  14. Karus, M.S., Ortmann, O.D., Vogt, G.: Use of natural fibres in composites in the German automotive production 1996 till 2003. Nova-Institut GmbH (2004). www.nova-institut.de/NR

  15. Rowell, R.M., Pettersen, R., Han, J.S., et al. Cell wall chemistry. In: Roger, R.M. (ed.) Handbook of Wood Chemistry and Wood Composites, pp. 35–74. Taylor & Francis, Boca Raton (2005)

    Google Scholar 

  16. Dittenber, D.B., GangaRao, H.V.S.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A Appl. Sci. Manuf. 43, 1419–1429 (2012)

    Article  Google Scholar 

  17. John, M., Thomas, S.: Biofibres and biocomposites. CarbohydrPolym 71, 343–364 (2008)

    Google Scholar 

  18. Saka, S.: Chemical composition and distribution. In: Hon, D.N.S., Shiraishi, N. (eds.) Wood and Cellulosic Chemistry. 2nd edn, pp. 51–82. Marcel Dekker, Inc., New York (1991)

    Google Scholar 

  19. Fujita, M., Harada, H.: Ultrastructure and formation of wood cell wall. In: Hon D.N.S., Shiraishi, N. (eds.) Wood and Cellulosic Chemistry, 2nd edn, pp 1–50. Marcel Dekker, Inc., New York (2001)

    Google Scholar 

  20. Fengel, D., Wegener, G.: Wood: Chemistry, Ultrastructure. Reactions, p. 613. Walter de Gruyter Berlin, New York (1989)

    Google Scholar 

  21. Thakur, V.K., Thakur, M.K., Gupta, R.K.: Review: raw natural fiber-based polymer composites. Int. J. Polym. Anal. Charact. 19(3), 256–271 (2014)

    Article  Google Scholar 

  22. Baeza, J., Freer, J.: Chemical characterization of wood and its components. In: Hon, D.N.S., Shiraishi, N. (eds.) Wood and Cellulosic Chemistry, 2nd edn, pp. 275–384. Marcel Dekker, Inc., New York (2001)

    Google Scholar 

  23. Chanda, M., Roy, S.K.: Plastics Technology Handbook, 3rd edn, p. 1195. Published by Marcel Dekker Inc., New York (1998)

    Google Scholar 

  24. Klyosov, A.A.: Wood-plastic composites. Wiley, Hoboken (2007)

    Book  Google Scholar 

  25. Lu, J.Z., Qinglin, W., McNabb Jr., H.S.: Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci. 32(1), 88–104 (2000)

    Google Scholar 

  26. Simonsen, J., Jacobsen, R., Rowell, R.: Wood-fiber reinforcement of styrene-maleic anhydride copolymers. J. Appl. Polym. Sci. 68(10), 1567–1573 (1998)

    Article  Google Scholar 

  27. Gassan, J., Bledzki, A.K.: The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Compos. A Appl. Sci. Manuf. 28(12), 1001–1005 (1997)

    Article  Google Scholar 

  28. Gassan, J., Bledzki, A.K.: Dynamic-mechanical properties of natural fiber-reinforced plastics: the effect of coupling agents. In: Proceedings of the 4th International Conference on Wood Fiber-Plastic Composites, Madison, WI, 12–14 May, pp. 76–80 (1997)

    Google Scholar 

  29. Berdahl, P., Akbari, H., Levinson, R., et al.: Weathering of roofing materials—an overview. Constr. Build. Mater. 22(4), 423–433 (2008)

    Article  Google Scholar 

  30. Tocháček, J., Sedlář, J.: Effect of hydrolysability and structural features of phosphites on processing stability of isotactic polypropylene. Polym. Degrad. Stab. 41(2), 177–184 (1993)

    Article  Google Scholar 

  31. Zheng, K., Tang, H., Chen, Q., et al.: Enzymatic synthesis of a polymeric antioxidant for efficient stabilization of polypropylene. Polym. Degrad. Stab. 112, 27–34 (2015)

    Article  Google Scholar 

  32. Fu, S.Y., Lauke, B.: Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos. Sci. Technol. 56(10), 1179–1190 (1996)

    Article  Google Scholar 

  33. Tucker, C.L., Advani, S.G.: Processing of short-fiber systems.  In: Advani, S.G. (Ed.) Flow and rheology in polymer composites manufacturing, pp. 147–202. Elsevier, Amsterdam (1994)

    Google Scholar 

  34. Todd, D.B.: Improving incorporation of fillers in plastics, a special report. Adv. Polym. Technol. 19(1), 54–64 (2000)

    Article  Google Scholar 

  35. Clemons, C.M., Caulfield, D.F., Giacomin, A.J.: Dynamic fracture toughness of cellulose-fiber-reinforced polypropylene: preliminary investigation of microstructural effects. J. Elastomers Plast. 31(4), 367–378 (1999)

    Google Scholar 

  36. Migneault, S., Koubaa, A., Erchiqui, F., et al.: Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos. A Appl. Sci. Manuf. 40(1), 80–85 (2009)

    Article  Google Scholar 

  37. Graupner, N., Müssig, J.: A comparison of the mechanical characteristics of kenaf and lyocellfibre reinforced poly (lactic acid)(PLA) and poly (3-hydroxybutyrate)(PHB) composites. Compos. A Appl. Sci. Manuf. 42(12), 2010–2019 (2011)

    Article  Google Scholar 

  38. Zampaloni, M., Pourboghrat, F., Yankovich, S.A., et al.: Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Compos. A Appl. Sci. Manuf. 38(6), 1569–1580 (2007)

    Article  Google Scholar 

  39. Beninia, K., Voorwald, H.J.C., Cioffi, M.O.H.: Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Eng. 10, 3246–3251 (2011)

    Article  Google Scholar 

  40. Evans, P.D., Thay, P.D., Schmalzl, K.J.: Degradation of wood surfaces during natural weathering. Effects of lignin and cellulose and on the adhesion of acrylic latex primers. Wood Sci. Technol. 30(6), 411–422 (1996)

    Article  Google Scholar 

  41. Abu-Sharkh, B.F., Hamid, H.: Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym. Degrad. Stab. 85(3), 967–973 (2004)

    Article  Google Scholar 

  42. Azwa, Z.N., Yousif, B.F., Manalo, A.C., et al.: A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, 424–442 (2013)

    Article  Google Scholar 

  43. Adler, E.: Lignin chemistry-past, present and future. Wood Sci. Technol. 11(3), 169–218 (1977)

    Article  Google Scholar 

  44. Fabiyi, J.S.: Chemistry of wood plastic composite weathering. University of Idaho (2007)

    Google Scholar 

  45. Matuana, L.M., Jin, S., Stark, N.M.: Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer. Polym. Degrad. Stab. 96, 97–106 (2011)

    Article  Google Scholar 

  46. García, M., Hidalgo, J., Garmendia, I., García-Jaca, J.: Wood-plastics composites with better fire retardancy and durability performance. Compos. A Appl. Sci. Manuf. 40, 1772–1776 (2009)

    Article  Google Scholar 

  47. CIE L*a*b* Color Scale. In: Laboratory, H.A. (ed.) www.hunterlab.com (2008)

  48. Stark, N.M.: Photodegradation and photostabilization of weathered wood flour filled polyethylene composites. Michigan Technological University (2003)

    Google Scholar 

  49. Stark, N.M., Matuana, L.M.: Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polym. Degrad. Stab. 86, 1–9 (2004)

    Article  Google Scholar 

  50. Mathew, A.P., Oksman, K., Sain, M.: The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J. Appl. Polym. Sci. 101(1), 300–310 (2006)

    Article  Google Scholar 

  51. Muasher, M., Sain, M.: The efficacy of photostabilizers on the color change of wood filled plastic composites. Polym. Degrad. Stab. 91(5), 1156–1165 (2006)

    Article  Google Scholar 

  52. Chetanachan, W., Sookkho, D., Sutthitavil, W., et al.: PVC wood: a new look in construction. J. Vinyl Add. Tech. 7(3), 134 (2001)

    Article  Google Scholar 

  53. Butylina, S., Hyvärinen, M., Kärki, T.: A study of surface changes of wood-polypropylene composites as the result of exterior weathering. Polym. Degrad. Stab. 97(3), 337–345 (2012)

    Article  Google Scholar 

  54. Falk, R.H., Lundin, T., Felton, C.: The effects of weathering on wood-thermoplastic composites intended for outdoor applications. In: Proceedings of the 2nd Annual Conference on Durability and Disaster Mitigation in Wood-Frame Housing. Madison, WI, USA, pp. 175–179 (2000)

    Google Scholar 

  55. Fabiyi, J.S., McDonald, A.G.: Effect of wood species on property and weathering performance of wood plastic composites. Compos. A Appl. Sci. Manuf. 41(10), 1434–1440 (2010)

    Article  Google Scholar 

  56. Stark, N.M.: Factors influencing the weatherability of wood-polyethylene composites. In: Proceedings of the Global Outlook for Natural Fiber & Wood Composites, Portland, ME, USA. 3–5 Dec 2003

    Google Scholar 

  57. Stark, N.M., Matuana, L.M., Clemons, C.M.: Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. J. Appl. Polym. Sci. 93(3), 1021–1030 (2004)

    Article  Google Scholar 

  58. Gardette, M., Perthue, A., Gardette, J.L., et al.: Photo-and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content. Polym. Degrad. Stab. 98(11), 2383–2390 (2013)

    Article  Google Scholar 

  59. Fabiyi, J.S., McDonald, A.G., Wolcott, M.P., et al.: Wood plastic composites weathering: Visual appearance and chemical changes. Polym. Degrad. Stab. 93(8), 1405–1414 (2008)

    Article  Google Scholar 

  60. Peng, Y., Liu, R., Cao, J., et al.: Antiweathering effects of vitamin E on wood flour/polypropylene composites. Polym. Compos. 35(11), 2085–2093 (2014)

    Article  Google Scholar 

  61. Lundin, T., Cramer, S.M., Falk, R.H., et al.: Accelerated weathering of natural fiber-filled polyethylene composites. J. Mater. Civ. Eng. 16(6), 547–555 (2004)

    Article  Google Scholar 

  62. Butylina, S., Hyvärinen, M., Kärki, T.: Accelerated weathering of wood–polypropylene composites containing minerals. Compos. A Appl. Sci. Manuf. 43(11), 2087–2094 (2012)

    Article  Google Scholar 

  63. Selden, R., Nyström, B., Långström, R.: UV aging of poly (propylene)/wood-fiber composites. Polym. Compos. 25(5), 543–553 (2004)

    Article  Google Scholar 

  64. Beg, M.D.H., Pickering, K.L.: Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites. Polym. Degrad. Stab. 93(10), 1939–1946 (2008)

    Article  Google Scholar 

  65. La Mantia, F.P., Morreale, M.: Accelerated weathering of polypropylene/wood flour composites. Polym. Degrad. Stab. 93(7), 1252–1258 (2008)

    Article  Google Scholar 

  66. Yan, L., Chouw, N., Jayaraman, K.: Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater. Des. 71, 17–25 (2015)

    Article  Google Scholar 

  67. Colom, X., Carrillo, F., Nogués, F., et al.: Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 80(3), 543–549 (2003)

    Article  Google Scholar 

  68. Homkhiew, C., Ratanawilai, T., Thongruang, W.: Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour. Ind. Crops Prod. 56, 52–59 (2014)

    Article  Google Scholar 

  69. Stokke, D.D., Gardner, D.J.: Fundamental aspects of wood as a component of thermoplastic composites. J. Vinyl Add. Tech. 9(2), 96–104 (2003)

    Article  Google Scholar 

  70. Mikulášová, M., Košíková, B.: Biodegradability of lignin-Polypropylene composite films. Folia Microbiol. 44(6), 669–672 (1999)

    Article  Google Scholar 

  71. Morandim-Giannetti, A.A., Agnelli, J.A.M., Lanças, B.Z., et al.: Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr. Polym. 87(4), 2563–2568 (2012)

    Article  Google Scholar 

  72. Rabek, J.F.: Photochemical aspects of degradation of polymers. In: Rabek, J.F. (ed.) Polymer Photodegradation: Mechanisms and Experimental Methods. Springer, New York, pp. 24–66 (1995)

    Google Scholar 

  73. Gugumus, F.: Light stabilizers. In: Gächter, R., Müller, H. (eds.) Plastics Additives Handbook. Hanser Publisher, New York, pp. 129–262 (1990)

    Google Scholar 

  74. Grabmayer, K., Wallner, G.M., Beißmann, S., et al.: Characterization of the aging behavior of polyethylene by photoluminescence spectroscopy. Polym. Degrad. Stab. 107, 28–36 (2014)

    Article  Google Scholar 

  75. Grabmayer, K., Wallner, G.M., Beißmann, S., et al.: Accelerated aging of polyethylene materials at high oxygen pressure characterized by photoluminescence spectroscopy and established aging characterization methods. Polym. Degrad. Stab. 109, 40–49 (2014)

    Article  Google Scholar 

  76. Jabarin, S.A., Lofgren, E.A.: Photooxidative effects on properties and structure of high-density polyethylene. J. Appl. Polym. Sci. 53(4), 411–423 (1994)

    Article  Google Scholar 

  77. Wypych, G.: Artificial weathering versus natural exposure. In: Wypych, G. (ed.) Handbook of Material Weathering. ChemTec Publishing, Toronto, Ontario, Canada, pp. 231–244 (2013)

    Google Scholar 

  78. Zhao, B.Y., Yi, X.W., Li, R.Y., et al.: Characterization to the weathering extent of LLDPE/LDPE thin film. J. Appl. Polym. Sci. 88(1), 12–16 (2003)

    Article  Google Scholar 

  79. Sebaa, M., Servens, C., Pouyet, J.: Natural and artificial weathering of low-density polyethylene (LDPE): Calorimetric analysis. J. Appl. Polym. Sci. 45(6), 1049–1053 (1992)

    Article  Google Scholar 

  80. Tavares, A.C., Gulmine, J.V., Lepienski, C.M., et al.: The effect of accelerated aging on the surface mechanical properties of polyethylene. Polym. Degrad. Stab. 81(2), 367–373 (2003)

    Article  Google Scholar 

  81. Gulmine, J.V., Janissek, P.R., Heise, H.M., et al.: Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 79(3), 385–397 (2003)

    Article  Google Scholar 

  82. Fabiyi, J.S., McDonald, A.G., McIlroy, D.: Wood modification effects on weathering of HDPE-based wood plastic composites. J. Polym. Environ. 17(1), 34–48 (2009)

    Article  Google Scholar 

  83. Matuana, L.M., Kamdem, D.P., Zhang, J.: Photoaging and stabilization of rigid PVC/wood-fiber composites. J. Appl. Polym. Sci. 80(11), 1943–1950 (2001)

    Article  Google Scholar 

  84. Chaochanchaikul, K., Rosarpitak, V., Sombatsompop, N.: Photodegradation profiles of PVC compound and wood/PVC composites under UV weathering. Exp. Polym. Lett. 7(2), 146–160 (2013)

    Article  Google Scholar 

  85. Colom, X., Carrillo, F., Nogués, F., et al.: Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 80(3), 543–549 (2003)

    Article  Google Scholar 

  86. Wang, S.Y., Lin, S.J.: The effect of outdoor environmental exposure on the main components of wood. MokuzaiGakkaishi 37(10), 954–963 (1991)

    Google Scholar 

  87. Park, B.S., Furuno, T., Uehara, T.: Histochemical changes of wood surfaces irradiated with ultraviolet light. MokuzaiGakkaishi 42(1), 1–9 (1996)

    Google Scholar 

  88. Kataoka, Y., Kiguchi, M.: Depth profiling of photo-induced degradation in wood by FT-IR microspectroscopy. J. Wood Sci. 47(4), 325–327 (2001)

    Article  Google Scholar 

  89. Hon, D.N.S., Ifju, G.: Measuring penetration of light into wood by detection of photo-induced free radicals. Wood Sci. 11(2), 118–127 (1978)

    Google Scholar 

  90. Hon, D.N.S., Ifju, G., Feist, W.C.: Characteristics of free radicals in wood. Wood Fiber 12(2), 121–130 (1980)

    Google Scholar 

  91. Hon, D.N.S.: Weathering and photochemistry of wood. In: Hon, D.N.S., Shiraishi, N. (eds) Wood and Cellulosic Chemistry, 2nd edn. Marcel Dekker, Inc., New York, pp. 512–546 (2001)

    Google Scholar 

  92. Popescu, C.M., Popescu, M.C., Vasile, C.: Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. Int. J. Biol. Macromol. 48(4), 667–675 (2011)

    Article  Google Scholar 

  93. George, B., Suttie, E., Merlin, A., et al.: Photodegradation and photostabilisation of wood-the state of the art. Polym. Degrad. Stab. 88(2), 268–274 (2005)

    Article  Google Scholar 

  94. Windeisen, E., Wegener, G.: Lignin as building unit for polymers. In: Matyjaszewski, K., Martin, M. (eds) Polymer Science: A Comprehensive Reference, pp 255–265. Elsevier, Amsterdam (2012)

    Google Scholar 

  95. Popescu, C.M., Spiridon, I., Tibirna, C.M., et al.: A thermogravimetric study of structural changes of lime wood (Tiliacordata Mill.) induced by exposure to simulated accelerated UV/Vis-light. J. Photochem. Photobiol. A 217(1), 207–212 (2011)

    Article  Google Scholar 

  96. Garcia, R., Triboulot, M.C., Merlin, A., et al.: Variation of the viscoelastic properties of wood as a surface finishes substrate. Wood Sci. Technol. 34(2), 99–107 (2000)

    Article  Google Scholar 

  97. Lanzalunga, O., Bietti, M.: Photo-and radiation chemical induced degradation of lignin model compounds. J. Photochem. Photobiol. B 56(2), 85–108 (2000)

    Article  Google Scholar 

  98. Kringstad, K.P., Lin, S.Y.: Mechanisms in the yellowing of high yield pulps by light: structure and reactivity of free radical intermediates in the photodegradation of lignin. Tappi 53, 2296–2301 (1970)

    Google Scholar 

  99. Hon, D.N.S.: Thermomechanical Pulp and Light-Photoactivity of α-Carbonyl Group in Solid Lignin]. J. Wood Chem. Technol. 12(2), 179–196 (1992)

    Article  Google Scholar 

  100. Pandey, K.K., Vuorinen, T.: Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym. Degrad. Stab. 93(12), 2138–2146 (2008)

    Article  Google Scholar 

  101. Müller, U., Rätzsch, M., Schwanninger, M., et al.: Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B 69(2), 97–105 (2003)

    Article  Google Scholar 

  102. Kalnins, M.A., Feist, W.C.: Increase in wettability of wood with weathering. For. Prod. J. 43(2), 55 (1993)

    Google Scholar 

  103. Teacă, C.A., Roşu, D., Bodîrlău, R., et al.: Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements—a brief review. BioResources 8(1), 1478–1507 (2013)

    Article  Google Scholar 

  104. Browne, F.L.: The penetration of light into wood. For. Prod. J. 7, 308–314 (1957)

    Google Scholar 

  105. Hon, D.N.S.: Photooxidative degradation of cellulose: reactions of the cellulosic free radicals with oxygen. J. Polym. Sci. Polym. Chem. Ed. 17(2), 441–454 (1979)

    Article  Google Scholar 

  106. Pietta, P.G.: Flavonoids as antioxidants. J. Nat. Prod. 63(7), 1035–1042 (2000)

    Article  Google Scholar 

  107. Wu, J.H., Tung, Y.T., Wang, S.Y., et al.: Phenolic antioxidants from the heartwood of Acacia confuse. J. Agric. Food Chem. 53(15), 5917–5921 (2005)

    Article  Google Scholar 

  108. Chang, T.C., Chang, H.T., Wu, C.L., et al.: Influences of extractives on the photodegradation of wood. Polym. Degrad. Stab. 95(4), 516–521 (2010)

    Article  Google Scholar 

  109. Chang, T.C., Chang, H.T., Wu, C.L., et al.: Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polym. Degrad. Stab. 95(9), 1518–1522 (2010)

    Article  Google Scholar 

  110. Stark, N.M., Matuana, L.M.: Influence of photostabilizers on wood flour-HDPE composites exposed to xenon-arc radiation with and without water spray. Polym. Degrad. Stab. 91(12), 3048–3056 (2006)

    Article  Google Scholar 

  111. Du, H., Wang, W., Wang, Q., et al.: Effects of pigments on the UV degradation of wood-flour/HDPE composites. J. Appl. Polym. Sci. 118(2), 1068–1076 (2010)

    Google Scholar 

  112. Zhang, Z., Du, H., Wang, W., et al.: Property changes of wood-fiber/HDPE composites colored by iron oxide pigments after accelerated UV weathering. J. For. Res. 21(1), 59–62 (2010)

    Article  Google Scholar 

  113. Butylina, S., Hyvärinen, M., Kärki, T.: Weathering of wood-polypropylene composites containing pigments. Eur. J. Wood Wood Prod. 70(5), 719–726 (2012)

    Article  Google Scholar 

  114. Stark, N.M., Mueller, S.A.: Improving the color stability of wood-plastic composites through fiber pre-treatment. Wood Fiber Sci. 40(2), 271–278 (2008)

    Google Scholar 

  115. Devi, R.R., Gogoi, K., Konwar, B.K., et al.: Synergistic effect of nanoTiO2 and nanoclay on mechanical, flame retardancy, UV stability, and antibacterial properties of wood polymer composites. Polym. Bull. 70(4), 1397–1413 (2013)

    Article  Google Scholar 

  116. Peng, Y., Guo, X., Cao, J., et al.: Effects of two staining methods on color stability of wood flour/polypropylene composites during accelerated UV weathering. Polym. Compos. DOI: 10.1002/pc.23683 (2015)

  117. Butylina, S., Martikka, O., Kärki, T.: Weathering properties of coextruded polypropylene-based composites containing inorganic pigments. Polym. Degrad. Stab. 120, 10–16 (2015)

    Article  Google Scholar 

  118. Du, H., Wang, W., Wang, Q., et al.: Effects of ultraviolet absorbers on the ultraviolet degradation of rice-hull/high-density polyethylene composites. J. Appl. Polym. Sci. 126(3), 906–915 (2012)

    Article  Google Scholar 

  119. Stark, N.M., Matuana, L.M.: Ultraviolet weathering of photostabilized wood-flour-filled high-density polyethylene composites. J. Appl. Polym. Sci. 90(10), 2609–2617 (2003)

    Article  Google Scholar 

  120. Bouza, R., Abad, M.J., Barral, L., et al.: Efficacy of hindered amines in woodflour-polypropylene composites compatibilized with vinyltrimethoxysilane after accelerated weathering and moisture absorption. J. Appl. Polym. Sci. 120(4), 2017–2026 (2011)

    Article  Google Scholar 

  121. Rychlý, J., Mosnáčková, K., Rychlá, L., et al.: Comparison of the UV stabilisation effect of commercially available processing stabilizers Irganox HP 136 and Irganox 1010. Polym. Degrad. Stab. 118, 10–16 (2015)

    Article  Google Scholar 

  122. Scott, G.: Mechanisms of polymer stabilization. Pure Appl. Chem. 30(1–2), 267–290 (1972)

    Google Scholar 

  123. Pénzes, G., Domján, A., Tátraaljai, D., Staniek, P., Földes, E., Pukánszky, B.: High temperature reactions of an aryl–alkyl phosphine, an exceptionally efficient melt stabilizer for polyethylene. Polym. Degrad. Stab. 95(9), 1627–1635 (2010)

    Article  Google Scholar 

  124. Ojeda, T., Freitas, A., Birck, K., Dalmolin, E., Jacques, R., Bento, F., Camargo, F.: Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 96(4), 703–707 (2011)

    Article  Google Scholar 

  125. Peng, Y., Liu, R., Cao, J.: Effects of antioxidants on photodegradation of wood flour/polypropylene composites during artificial weathering. BioResources 9(4), 5817–5830 (2014)

    Google Scholar 

  126. Bracco, P., Brunella, V., Zanetti, M., et al.: Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym. Degrad. Stab. 92(12), 2155–2162 (2007)

    Article  Google Scholar 

  127. Al-Malaika, S., Issenhuth, S.: The antioxidant role of vitamin E in polymers. IV. Reaction products of dl-α-tocopherol with lead dioxide and with polyolefins. Polymer 42(7), 2915–2939 (2001)

    Article  Google Scholar 

  128. Peng, Y., Liu, R., Cao, J., et al.: Antiweathering effects of vitamin E on wood flour/polypropylene composites. Polym. Compos. 35(11), 2085–2093 (2014)

    Article  Google Scholar 

  129. Peng, Y., Liu, R., Cao, J., et al.: Effects of vitamin E combined with antioxidants on wood flour/polypropylene composites during accelerated weathering. Holzforschung 69(1), 113–120 (2015)

    Google Scholar 

  130. Kirschweng, B., Tátraaljai, D., Földes, E., et al.: Efficiency of curcumin, a natural antioxidant, in the processing stabilization of PE: concentration effects. Polym. Degrad. Stab. 118, 17–23 (2015)

    Article  Google Scholar 

  131. Wang, Q., Wu, J., Gao, Y., et al.: Polypropylene/Mg 3 Al–tartrazine LDH nanocomposites with enhanced thermal stability, UV absorption, and rheological properties. RSC Adv. 3(48), 26017–26024 (2013)

    Article  Google Scholar 

  132. Chai, H., Lin, Y., Evans, D.G., et al.: Synthesis and UV absorption properties of 2-naphthylamine-1, 5-disulfonic acid intercalated Zn-Al layered double hydroxides. Ind. Eng. Chem. Res. 47(9), 2855–2860 (2008)

    Article  Google Scholar 

  133. Zhang, X., Zhou, L., Pi, H., et al.: Performance of layered double hydroxides intercalated by a UV stabilizer in accelerated weathering and thermal stabilization of PVC. Polym. Degrad. Stab. 102, 204–211 (2014)

    Article  Google Scholar 

  134. Zhang, L., Lin, Y., Tuo, Z., et al.: Synthesis and UV absorption properties of 5-sulfosalicylate-intercalated Zn–Al layered double hydroxides. J. Solid State Chem. 180(4), 1230–1235 (2007)

    Article  Google Scholar 

  135. Pang, L., Liu, K., Wu, S., et al.: Effect of LDHs on the aging resistance of crumb rubber modified asphalt. Constr. Build. Mater. 67, 239–243 (2014)

    Article  Google Scholar 

  136. Peng, Y., Wang, W., Cao, J., et al.: Effects of a layered double hydroxide (LDH) on the photostability of wood flour/polypropylene composites during UV weathering. RSC Adv. 5(51), 41230–41237 (2015)

    Article  Google Scholar 

  137. Qin, H., Zhao, C., Zhang, S., et al.: Photo-oxidative degradation of polyethylene/montmorillonitenanocomposite. Polym. Degrad. Stab. 81(3), 497–500 (2003)

    Article  Google Scholar 

  138. Pagacz, J., Chrzanowski, M., Krucińska, I., et al.: Thermal aging and accelerated weathering of PVC/MMT nanocomposites: structural and morphological studies. J. Appl. Polym. Sci. 132(24), 42090–42101 (2015)

    Google Scholar 

  139. Redhwi, H.H., Siddiqui, M.N., Andrady, A.L., et al.: Durability of LDPE nanocomposites with clay, silica, and zinc oxide II. weatherability of the nanocomposites. Polym. Compos. 34(11), 1878–1883 (2013)

    Article  Google Scholar 

  140. Morlat-Therias, S., Mailhot, B., Gonzalez, D., et al.: Photooxidation of polypropylene/montmorillonitenanocomposites. 2. Interactions with antioxidants. Chem. Mater. 17(5), 1072–1078 (2005)

    Article  Google Scholar 

  141. Pattamasattayasonthi, N., Chaochanchaikul, K., Rosarpitak, V., et al.: Effects of UV weathering and a CeO2-based coating layer on the mechanical and structural changes of wood/PVC composites. J. Vinyl Add. Tech. 17(1), 9–16 (2011)

    Article  Google Scholar 

  142. Rosu, D., Teaca, C.A., Bodirlau, R., et al.: FTIR and color change of the modified wood as a result of artificial light irradiation. J. Photochem. Photobiol. B 99(3), 144–149 (2010)

    Article  Google Scholar 

  143. Hung, K.C., Chen, Y.L., Wu, J.H.: Natural weathering properties of acetylated bamboo plastic composites. Polym. Degrad. Stab. 97(9), 1680–1685 (2012)

    Article  Google Scholar 

  144. Peng, Y., Liu, R., Cao, J., et al.: Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose. Appl. Surf. Sci. 317, 385–392 (2014)

    Article  Google Scholar 

  145. Peng, Y., Liu, R., Cao, J.: Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Appl. Surf. Sci. 332, 253–259 (2015)

    Article  Google Scholar 

  146. Gregorová, A., Cibulková, Z., Košíková, B., et al.: Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stab. 89(3), 553–558 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhen Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, Y., Cao, J. (2016). Photochemical Process of Wood-Thermoplastic Composites. In: Rosu, D., Visakh P. M. (eds) Photochemical Behavior of Multicomponent Polymeric-based Materials. Advanced Structured Materials, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-25196-7_10

Download citation

Publish with us

Policies and ethics