Skip to main content

Multiscale Stochastic Representation in High-Dimensional Data Using Gaussian Processes with Implicit Diffusion Metrics

  • Conference paper
  • First Online:
Dynamic Data-Driven Environmental Systems Science (DyDESS 2014)

Abstract

We develop a stochastic representation of a scalar function defined on a high-dimensional space conditional on marginal statistics of the function at a finite set of localities and a high-dimensional correlation structure. The representation leverages a particular structure of the functional dependence that exhibits scale separation. In the process, we construct a polynomial chaos representation for the scalar quantity of interest (QoI) whose coefficients are themselves random. The intrinsic randomness of the polynomial chaos expansion (PCE) reflects local uncertainty and captures dependence on a subset (say \(S_1\)) of the parameters, while randomness in the PCE coefficients captures a global structure of the uncertainty and dependence on the remaining parameters (say \(S_2\)) in the high-dimensional space (let \(S=S_1\cup S_2\)). This construction is demonstrated by predicting wellbore signatures in the Gulf of Mexico (GoM) where 100 tabulated data values are available at several thousand wellbore locations throughout the GoM. Reservoir simulators describing the physics of multiphase flow in porous media are used to calculate the PCE representations at the sites where data is available. In this context, random parameters describing the subsurface define the parameter set \(S_1\). A Gaussian process model is then developed for each coefficient in these representations, construed as a function on \(S_2\) over which an intrinsic diffusion metric is defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006). http://www.sciencedirect.com/science/article/pii/S1063520306000546, special Issue: Diffusion Maps and Wavelets

    Article  MathSciNet  MATH  Google Scholar 

  2. Cressie, N.: The origins of kriging. Math. Geol. 22(3), 239–252 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dunson, D.B., Pillai, N., Park, J.H.: Bayesian density regression. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 69(2), 163–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach, vol. 41. Springer, New York (1991)

    Book  MATH  Google Scholar 

  5. Graham, J., Rose, K., Bauer, J., Disenhof, C., Jenkins, C., Nelson, J., Ringo, C., Sim, L., VanAckeren, K.: Integration of spatial data to support risk and impact assessments for deep and ultra-deepwater hydrocarbon activities in the Gulf of Mexico. EPAct Technical report Series, Morgantown, WV; p. 36, NETL-TRS-4-2012 (2012)

    Google Scholar 

  6. Isaaks, E., Srivastava, R.: Applied Geostatistics. Oxford University, London (2011)

    MATH  Google Scholar 

  7. Krige, D.: A statistical approach to some basic mine valuation problems on the Witwatersrand. Jnl. C’hem. Met. and Min. Soc. S. Afr. 52, 119–139 (1951)

    Google Scholar 

  8. Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  9. McNutt, M.K., Camilli, R., Crone, T.J., Guthrie, G.D., Hsieh, P.A., Ryerson, T.B., Savas, O., Shaffer, F.: Review of flow rate estimates of the Deepwater Horizon oil spill. Proc. Nat. Acad. Sci. 109(50), 20260–20267 (2012)

    Article  Google Scholar 

  10. Müller, P., Erkanli, A., West, M.: Bayesian curve fitting using multivariate normal mixtures. Biometrika 83(1), 67–79 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  12. Sakamoto, S., Ghanem, R.: Simulation of multi-dimensional non-gaussian non-stationary random fields. Probab. Eng. Mech. 17(2), 167–176 (2002)

    Article  Google Scholar 

  13. Shinozuka, M., Deodatis, G.: Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 44(4), 191–204 (1991)

    Article  MathSciNet  Google Scholar 

  14. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ghanem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Thimmisetty, C. et al. (2015). Multiscale Stochastic Representation in High-Dimensional Data Using Gaussian Processes with Implicit Diffusion Metrics. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics