Skip to main content

Metamaterials

  • Chapter
  • First Online:
Optical Properties of Metallic Nanoparticles

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 232))

  • 1943 Accesses

Abstract

The refractive index n corresponds to the factor by which the speed and wavelength of any radiation is reduced, when it propagates in an optical medium rather than in vacuum. Hence it describes a ratio and is therefore a dimensionless number. A value of n  = 1. 5, for example, states that a light wave travels 1.5 times faster in vacuum than it does in the corresponding medium (glass in this case). Since we also know the laws of relativity and its keystone, the absolute value and constancy of the speed of light, it is only reasonable that n has to be a positive number greater than unity for all optical materials in our universe.

I was invisible, and I was only just beginning to realise the extraordinary advantage my invisibility gave me. My head was already teeming with plans of all the wild and wonderful things I had now impunity to do. H. G. Wells, The Invisible Man

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Any negative-index material must be strongly dispersive, i.e. there must also exist frequency ranges with a positive refractive index, because otherwise the energy density integrated over all frequencies would be negative [14].

  2. 2.

    In [16] the authors discovered a fundamental limitation on the ultimate spatial resolution of the perfect lens as a result from spatial dispersion (nonlocality) of the dielectric response. The resolution of the lens will also generally be reduced if the slab material is lossy, see e.g. [17] for a summary to this topic.

  3. 3.

    Recently some strategies have been developed to overcome this narrow bandwidth constraint, mostly by sacrificing some degree of invisibility in return for a broader bandwidth [33].

References

  1. K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, M. Wegener, Periodic nanostructures for photonics. Phys. Rep 444, 101–202 (2007).

    Google Scholar 

  2. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater 7(6), 435–441 (2008).

    Google Scholar 

  3. K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, S. Savel’ev, F. Nori, Colloquium: unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys 80, 1201–1213 (2008).

    Google Scholar 

  4. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004).

    Google Scholar 

  5. H.J. Lezec, J.A. Dionne, H.A. Atwater, Negative refraction at visible frequencies. Science 316, 5823 (2007).

  6. A.K. Sarychev, V.M. Shalaev, Electrodynamics of Metamaterials (World Scientific, Singapore/Hackensack, 2007). ISBN 9789810242459

    Google Scholar 

  7. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, Berlin, 2010). ISBN 978-1-4419-1150-6

  8. N.I. Zheludev, A roadmap for metamaterials. Opt. Photonics News 22, 30–35 (2011).

    Google Scholar 

  9. F. Monticone, A. Alú, Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin. Phys. B 23(4), 047809 (2014).

    Google Scholar 

  10. O. Hess, Optics: farewell to flatland. Nature 455(7211), 299–300 (2008).

    Google Scholar 

  11. G. Dolling, M. Wegener, S. Linden, C. Hormann, Photorealistic images of objects in effective negative-index materials. Opt. Exp 14(5), 1842–1849 (2006).

    Google Scholar 

  12. D. Schurig, J.B. Pendry, D.R. Smith, Calculation of material properties and ray tracing in transformation media. Opt. Exp 14(21), 9794–9804 (2006).

    Google Scholar 

  13. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp 10, 509 (1968).

  14. L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press, Cambridge, 2012). ISBN 978-1107005464

  15. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011).

    Google Scholar 

  16. I.A. Larkin, M.I. Stockman, Imperfect perfect lens. Nano Lett 5, 339 (2005).

    Google Scholar 

  17. R.E. Collin, Frequency dispersion limits resolution in veselago lens. Prog. Electromagn. Res. B 19, 233–261 (2010).

    Google Scholar 

  18. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett 85, 3966–3969 (2000).

    Google Scholar 

  19. R. Sambles, Nano-optics: gold loses its lustre. Nat. Photonics 438(7066), 295–296 (2005).

    Google Scholar 

  20. P. Andrew, W.L. Barnes, Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306(5698), 1002–1005 (2004).

  21. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003).

    Google Scholar 

  22. W.N. Hardy, L.A. Whitehead, Split-ring resonator for use in magnetic resonance from 200-2000 MHz. Rev. Sci. Instrum 52(2), 213–216 (1981).

    Google Scholar 

  23. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett 76, 4773–4776 (1996).

    Google Scholar 

  24. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech 47 (1999) 2075–2084.

    Google Scholar 

  25. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 Terahertz. Science 306(5700), 1351–1353 (2004).

  26. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006).

    Google Scholar 

  27. A.J. Ward, J.B. Pendry, Refraction and geometry in Maxwell’s equations. J. Mod. Opt 43(4), 773–793 (1996).

    Google Scholar 

  28. U. Leonhardt, Optical conformal mapping. Science 312(5781), 1777–1780 (2006).

    Google Scholar 

  29. U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking. Science 323(5910), 110–112 (2009).

  30. A. Nicolet, F. Zolla, C. Geuzaine, Transformation optics, generalized cloaking and superlenses. IEEE Trans. Magn 46(8), 2975–2981 (2010).

    Google Scholar 

  31. J.B. Pendry, A. Aubry, D.R. Smith, S.A. Maier, Transformation optics and subwavelength control of light. Science 337(6094), 549–552 (2012).

    Google Scholar 

  32. A.I. Fernández-Domínguez, A. Wiener, F.J. García-Vidal, S.A. Maier, J.B. Pendry, Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys. Rev. Lett 108, 106802 (2012).

  33. H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials. Nat. Mater 9(5), 387–396 (2010).

    Google Scholar 

  34. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006).

    Google Scholar 

  35. C. M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315(5808), 47–49 (2007) .

    Google Scholar 

  36. L. Billings, Exotic optics: metamaterial world. Nature 500(7461), 138–140 (2013).

  37. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alú, N. Engheta, Performing mathematical operations with metamaterials. Science 343(6167), 160–163 (2014).

    Google Scholar 

  38. M. Wegener, Metamaterials beyond optics. Science 342(6161), 939–940 (2013).

    Google Scholar 

  39. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011).

    Google Scholar 

  40. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett 99, 183901 (2007).

  41. U. Leonhardt, T. Philbin, Geometry and Light: The Science of Invisibility. Dover Books on Physics (Dover, New York, 2010). http://store.doverpublications.com/0486476936.html [ISBN 978-0486476933]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trügler, A. (2016). Metamaterials. In: Optical Properties of Metallic Nanoparticles. Springer Series in Materials Science, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-25074-8_9

Download citation

Publish with us

Policies and ethics