Skip to main content

The Autonomic Cardiorenal Crosstalk: Pathophysiology and Implications for Heart Failure Management

  • Chapter
  • First Online:
Heart Failure Management: The Neural Pathways

Abstract

Excessive sympathetic drive is undoubtedly a major contributing factor to the pathogenesis of hypertension and to the progression of HF. Importantly, much of the excessive sympathetic activity in these conditions targets the kidney, where it leads to inappropriate sodium retention, renin stimulation, and diminished renal function. In addition, the kidney itself is a source of increased sympathetic activation by way of the renal somatic afferent nerves. Various modalities currently allow measurement of sympathetic activation. The clinical relevance of information on autonomic cardiac control is supported by the evidence that increased sympathetic activity is associated with increased mortality in myocardial infarction and heart failure patients, and with an increased risk of sudden arrhythmic death. Many critically important changes occur in the kidney in the setting of cardiac dysfunction and neurohormonal activation. The escalating congestion resulting from these mutually detrimental cardiorenal interactions has profound implications for all abdominal vascular systems, including the splanchnic, intestinal, hepatic, and splenic circulations. The cardiorenal syndrome is therefore a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other organ. On the basis of this definition, five types of the cardiorenal syndrome have been identified and each has unique aspects of autonomic crosstalk between the heart and the kidney. In addition to landmark advances in the pharmacological treatment of neurohormonal activation, innovative non-pharmacological interventions are now evolving that can favorably modulate the cardiac and renal autonomic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. May CN, Frithiof R, Hood SG, McAllen RM, McKinley MJ, Ramchandra R. Specific control of sympathetic nerve activity to the mammalian heart and kidney. Exp Physiol. 2009;95:34–40.

    Article  PubMed  CAS  Google Scholar 

  2. Morrison SF. Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol. 2001;281:R683–98.

    CAS  PubMed  Google Scholar 

  3. Watson AM, Mogulkoc R, McAllen RM, May CN. Stimulation of cardiac sympathetic nerve activity by central angiotensinergic mechanisms in conscious sheep. Am J Physiol Regul Integr Comp Physiol. 2004;286:R1051–6.

    Article  CAS  PubMed  Google Scholar 

  4. Frithiof R, Ramchandra R, Hood SG, May CN, Rundgren M. The hypothalamic paraventricular nucleus mediates sodium induced changes in cardiovascular and renal function in conscious sheep. Am J Physiol Regul Integr Comp Physiol. 2009;397:R185–93.

    Article  CAS  Google Scholar 

  5. Ramchandra R, Hood SG, Watson AM, May CN. Responses of cardiac sympathetic nerve activity to changes in circulating volume differ in normal and heart failure sheep. Am J Physiol Regul Integr Comp Physiol. 2008;295:R719–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sobotka PA, Krum H, Böhm M, Francis DP, Schlaich MP. The role of renal denervation in the treatment of heart failure. Curr Cardiol Rep. 2012;14:285–92.

    Article  PubMed  Google Scholar 

  7. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33:1058–66.

    Article  CAS  PubMed  Google Scholar 

  8. Macefield V, Wallin BG, Vallbo AB. The discharge behaviour of single vasoconstrictor motoneurones in human muscle nerves. J Physiol (Lond). 1994;481:799–809.

    Article  CAS  Google Scholar 

  9. Lambert E, Straznicky N, Schlaich MP, et al. Differing patterns of sympathoexcitation in normal weight and obesity-related hypertension. Hypertension. 2007;50:862–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lambert G. The assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.

    Article  PubMed  Google Scholar 

  11. Friberg P, Meredith I, Jennings G, Lambert G, Fazio V, Esler M. Evidence of increased renal noradrenaline spillover rate during sodium restriction in man. Hypertension. 1990;16:121–30.

    Article  CAS  PubMed  Google Scholar 

  12. Hasking G, Esler M, Jennings G, Burton D, Johns J, Korner P. Norepinephrine spillover to plasma in congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    Article  CAS  PubMed  Google Scholar 

  13. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–86.

    Article  CAS  PubMed  Google Scholar 

  14. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol Heart Circ Physiol. 1991;261:H1231–45.

    CAS  Google Scholar 

  15. Van de Borne P, Rahnama M, Mezzetti S, et al. Contrasting effects of phentolamine and nitroprusside on neural and cardiovascular variability. Am J Physiol Heart Circ Physiol. 2001;281:H559–65.

    PubMed  Google Scholar 

  16. Parati G, Mancia G, Di Rienzo M, Castiglioni P, Taylor JA, Studinger P. Point: counterpoint cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:676–82.

    Article  PubMed  Google Scholar 

  17. Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 2000;18:7–19.

    Article  CAS  PubMed  Google Scholar 

  18. Parati G, di Rienzo M, Bertinieri G, et al. Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension. 1988;12:214–22.

    Article  CAS  PubMed  Google Scholar 

  19. Pagani M, Somers V, Furlan R, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12:600–10.

    Article  CAS  PubMed  Google Scholar 

  20. Robbe HW, Mulder LJ, Ruddel H, et al. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 1987;10:538–43.

    Article  CAS  PubMed  Google Scholar 

  21. Grassi M, Esler M. How to assess sympathetic activity in humans. J Hypertens. 1999;17:719–34.

    Article  CAS  PubMed  Google Scholar 

  22. Tripsodiakis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure: physiology, pathophysiology and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.

    Article  CAS  Google Scholar 

  23. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  24. Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426–35.

    Article  CAS  PubMed  Google Scholar 

  25. Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. J Nucl Cardiol. 2009;16:113–21.

    Article  PubMed  Google Scholar 

  26. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–97.

    CAS  PubMed  Google Scholar 

  27. DiBona GF. Neural control of the kidney: past, present, and future. Hypertension. 2003;41:621–4.

    Article  CAS  PubMed  Google Scholar 

  28. Bell-Reuss E, Trevino DL, Gottschalk CW. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976;57:1104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zanchetti AS. Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation. 1977;56:691–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kirchheim H, Ehmke H, Persson P. Sympathetic modulation of renal hemodynamics, renin release and sodium excretion. Klin Wochenschr. 1989;67:858–64.

    Article  CAS  PubMed  Google Scholar 

  31. Shlipak MG, Massie BM. The clinical challenge of cardiorenal syndrome. Circulation. 2004;110:1514–7.

    Article  PubMed  Google Scholar 

  32. Katholi RE, Hageman GR, Whitlow PL, et al. Hemodynamic and afferent renal nerve responses to intrarenal adenosine in the dog. Hypertension. 1983;5:I149–54.

    Article  CAS  PubMed  Google Scholar 

  33. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.

    Article  CAS  PubMed  Google Scholar 

  34. Hausberg M, Kosch M, Harmelink P, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.

    Article  PubMed  Google Scholar 

  35. Schlaich M, Krum H, Walton T, Lambert G, Sobotka P, Esler M. A novel catheter based approach to denervate the human kidney reduces blood pressure and muscle sympathetic nerve activity in a patient with end stage renal disease and hypertension. J Hypertens. 2009;27 Suppl 4:s437.

    Google Scholar 

  36. Zucker IH. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension. 2006;48:1005–11.

    Article  CAS  PubMed  Google Scholar 

  37. Levine TB, Francis GS, Goldsmith SR, et al. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol. 1982;49:1659–66.

    Article  CAS  PubMed  Google Scholar 

  38. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  39. Goldsmith SR, Sobotka PA, Bart BA. The sympathorenal axis in hypertension and heart failure. J Card Fail. 2010;16:369–73.

    Article  PubMed  Google Scholar 

  40. Cohn JN, Pfeffer MA, Rouleau J, et al. Adverse mortality effect of central sympathetic inhibition with sustained release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail. 2003;5:659–67.

    Article  CAS  PubMed  Google Scholar 

  41. Nozawa T, Igawa A, Fujii N, et al. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessels. 2002;16:51–6.

    Article  PubMed  Google Scholar 

  42. Francis GS, Siegel RM, Goldsmith SR, et al. Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann Intern Med. 1985;103:1–6.

    Article  CAS  PubMed  Google Scholar 

  43. Verbrugge FH, Dupont M, Steels P, et al. The kidney in congestive heart failure: are natriuresis, sodium, and diuretics really the good, the bad and the ugly? Eur J Heart Fail. 2014;16:133–42.

    Article  CAS  PubMed  Google Scholar 

  44. Gibson DG, Marshall JC, Lockey E. Assessment of proximal tubular sodium reabsorption during water diuresis in patients with heart disease. Br Heart J. 1970;32:399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lewy JE, Windhager EE. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol. 1968;214:943–54.

    CAS  PubMed  Google Scholar 

  46. Grandchamp A, Boulpaep EL. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J Clin Invest. 1974;54:69–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gottschalk CW, Mylle M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956;185:430–9.

    CAS  PubMed  Google Scholar 

  48. Burnett Jr JC, Knox FG. Renal interstitial pressure and sodium excretion during renal vein constriction. Am J Physiol. 1980;238:F279–82.

    CAS  PubMed  Google Scholar 

  49. Haddy FJ, Scott J, Fleishman M, Emanuel D. Effect of change in renal venous pressure upon renal vascular resistance, urine and lymph flow rates. Am J Physiol. 1958;195:97–110.

    CAS  PubMed  Google Scholar 

  50. Lebrie SJ, Mayerson HS. Influence of elevated venous pressure on flow and composition of renal lymph. Am J Physiol. 1960;198:1037–40.

    CAS  PubMed  Google Scholar 

  51. Ott CE, Haas JA, Cuche JL, Knox FG. Effect of increased peritubule protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J Clin Invest. 1975;55:612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lote CJ, Snape BM. Collecting duct flow rate as a determinant of equilibration between urine and renal papilla in the rat in the presence of a maximal antidiuretic hormone concentration. J Physiol. 1977;270:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Allen GG, Barratt LJ. Effect of aldosterone on the transepithelial potential difference of the rat distal tubule. Kidney Int. 1981;19:678–86.

    Article  CAS  PubMed  Google Scholar 

  54. Woodhall PB, Tisher CC. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J Clin Invest. 1973;52:3095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schrier RW. Aldosterone ‘escape’ vs ‘breakthrough’. Nat Rev Nephrol. 2010;6:61.

    Article  PubMed  Google Scholar 

  56. Tang WH, Vagelos RH, Yee YG, Benedict CR, Willson K, Liss CL, Fowler MB. Neurohormonal and clinical responses to high- versus low-dose enalapril therapy in chronic heart failure. J Am Coll Cardiol. 2002;39:70–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol. 2004;24:595–605.

    Article  CAS  PubMed  Google Scholar 

  58. Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62:485–95.

    Article  PubMed  Google Scholar 

  59. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.

    CAS  PubMed  Google Scholar 

  60. Guyton AC. Interstitial fluid pressure. II. Pressure-volume curves of interstitial space. Circ Res. 1965;16:452–60.

    Article  CAS  PubMed  Google Scholar 

  61. Sandek A, Rauchhaus M, Anker SD, von Haehling S. The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care. 2008;11:632–9.

    Article  PubMed  Google Scholar 

  62. Ding J, Magnotti LJ, Huang Q, Xu DZ, Condon MR, Deitch EA. Hypoxia combined with Escherichia coli produces irreversible gut mucosal injury characterized by increased intestinal cytokine production and DNA degradation. Shock. 2001;16:189–95.

    Article  CAS  PubMed  Google Scholar 

  63. Magnusson M, Magnusson KE, Denneberg T. Impaired gut barrier in experimental chronic uremic rats. Miner Electrolyte Metab. 1992;18:288–92.

    CAS  PubMed  Google Scholar 

  64. Sultanian R, Deng Y, Kaufman S. Atrial natriuretic factor increases splenic microvascular pressure and fluid extravasation in the rat. J Physiol. 2001;533:273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ronco C, Haapio M, House A, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  66. Hanada S, Takewa Y, Mizuno T, Tsukiyan T, Taenaka Y, Tatsumi E. Effect of the technique for assisting renal blood circulation on ischemic kidney in acute cardiorenal syndrome. J Artif Organs. 2012;15:140–5.

    Article  CAS  PubMed  Google Scholar 

  67. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884–8.

    Article  CAS  PubMed  Google Scholar 

  68. Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797–804.

    Article  PubMed  Google Scholar 

  69. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, Young JB, Tang WH. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

    Article  PubMed  Google Scholar 

  71. Nohria A, Hasselblad V, Stebbins A, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268–74.

    Article  PubMed  Google Scholar 

  72. Uthoff H, Breidthardt T, Klima T, et al. Central venous pressure and impaired renal function in patients with acute heart failure. Eur J Heart Fail. 2011;13:432–9.

    Article  PubMed  Google Scholar 

  73. Fiksen-Olsen MJ, Strick DM, Hawley H, Romero JC. Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertension. 1992;19:II137–41.

    Article  CAS  PubMed  Google Scholar 

  74. De Silva R, Loh H, Rigby AS, et al. Epidemiology, associated factors, and prognostic outcomes of renal artery stenosis in chronic heart failure assessed by magnetic resonance angiography. Am J Cardiol. 2007;100:273–9.

    Article  PubMed  Google Scholar 

  75. Maisel A, Xue Y, Shah K, Mueller C, et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ Heart Fail. 2011;4:613–20.

    Article  CAS  PubMed  Google Scholar 

  76. Shah RV, Truong QA, Gaggin HK, Pfannkuche J, Hartmann O, Januzzi Jr JL. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur Heart J. 2012;33:2197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maisel AS, Katz N, Hillege HL, Shaw A, et al. Acute Dialysis Quality Initiative Consensus Group: biomarkers in kidney and heart disease. Nephrol Dial Transplant. 2011;26:62–74.

    Article  PubMed  Google Scholar 

  78. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–30.

    Article  PubMed  Google Scholar 

  79. Hebert K, Dias A, Delgado MC, et al. Epidemiology and survival of the five stages of chronic kidney disease in a systolic heart failure population. Eur J Heart Fail. 2010;12:861–5.

    Article  PubMed  Google Scholar 

  80. Cruz DN, Bagshaw SM. Heart-kidney interaction: epidemiology of cardiorenal syndromes. Int J Nephrol. 2010;2011:351291. doi:10.4061/2011/351291.

    PubMed  PubMed Central  Google Scholar 

  81. Bagshaw SM, Cruz DN, Aspromonte N, et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010;25:1406–16.

    Article  PubMed  Google Scholar 

  82. Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154:260–6.

    Article  PubMed  Google Scholar 

  83. Tanaka K, Ito M, Kodama M, et al. Longitudinal change in renal function in patients with idiopathic dilated cardiomyopathy without renal insufficiency at initial diagnosis. Circ J. 2007;71:1927–31.

    Article  PubMed  Google Scholar 

  84. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 2012;82:516–24.

    Article  PubMed  Google Scholar 

  85. Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J. 2005;26:11–7.

    Article  PubMed  Google Scholar 

  86. Merrill AJ, Morrison JL, Branno ES. Concentration of renin in renal venous blood in patients with chronic heart failure. Am J Med. 1946;1:468.

    Article  CAS  PubMed  Google Scholar 

  87. Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM. Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res. 1984;55:669–75.

    Article  CAS  PubMed  Google Scholar 

  88. Kishimoto T, Maekawa M, Abe Y, Yamamoto K. Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kidney Int. 1973;4:259–66.

    Article  CAS  PubMed  Google Scholar 

  89. Rafiq K, Noma T, Fujisawa Y, et al. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation. 2012;125:1402–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Remuzzi G, Cattaneo D, Perico N. The aggravating mechanisms of aldosterone on kidney fibrosis. J Am Soc Nephrol. 2008;19:1459–62.

    Article  CAS  PubMed  Google Scholar 

  91. Onozato ML, Tojo A, Kobayashi N, Goto A, Matsuoka H, Fujita T. Dual blockade of aldosterone and angiotensin II additively suppresses TGF-β and NADPH oxidase in the hypertensive kidney. Nephrol Dial Transplant. 2007;22:1314–22.

    Article  CAS  PubMed  Google Scholar 

  92. Testani JM, Kimmel SE, Dries DL, Coca SG. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ Heart Fail. 2011;4:685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Capes SE, Gerstein HC, Negassa A, Yusuf S. Enalapril prevents clinical proteinuria in diabetic patients with low ejection fraction. Diabetes Care. 2000;23:377–80.

    Article  CAS  PubMed  Google Scholar 

  94. Bansal N, Tighiouart H, Weiner D, Griffith J, Vlagopoulos P, Salem D, Levin A, Sarnak MJ. Anemia as a risk factor for kidney function decline in individuals with heart failure. Am J Cardiol. 2007;99:1137–42.

    Article  PubMed  Google Scholar 

  95. Ljungman S, Kjekshus J, Swedberg K. Renal function in severe congestive heart failure during treatment with enalapril – the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) Trial. Am J Cardiol. 1992;70:479–87.

    Article  CAS  PubMed  Google Scholar 

  96. Hillege HL, van Gilst WH, van Veldhuisen DJ, Navis G, Grobbee DE, de Graeff PA, de Zeeuw D. Accelerated decline and prognostic impact of renal function after myocardial infarction and the benefits of ACE inhibition: the CATS randomized trial. Eur Heart J. 2003;24:412–20.

    Article  CAS  PubMed  Google Scholar 

  97. Anand IS, Bishu K, Rector TS, Ishani A, Kuskowski MA, Cohn JN. Proteinuria, chronic kidney disease, and the effect of an angiotensin receptor blocker in addition to an angiotensin-converting enzyme inhibitor in patients with moderate to severe heart failure. Circulation. 2009;120:1577–84.

    Article  CAS  PubMed  Google Scholar 

  98. Jackson CE, Solomon SD, Gerstein HC, et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374:543–50.

    Article  CAS  PubMed  Google Scholar 

  99. Boerrigter G, Costello-Boerrigter LC, Abraham WT, et al. Cardiac resynchronization therapy improves renal function in human heart failure with reduced glomerular filtration rate. J Card Fail. 2008;14:539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sandner SE, Zimpfer D, Zrunek P, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87:1072–8.

    Article  PubMed  Google Scholar 

  101. Kobuchi S, Tanaka R, Shintani T, et al. Mechanisms underlying the renoprotective effect of GABA against ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther. 2011;338:767–74.

    Article  CAS  PubMed  Google Scholar 

  102. Li C, Zhang D, Han S, et al. Synthesis, electronic properties, and applications of indium oxide nanowires. Ann N Y Acad Sci. 2003;1006:104–21.

    Article  CAS  PubMed  Google Scholar 

  103. Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol. 2001;189:257–65.

    Article  CAS  PubMed  Google Scholar 

  104. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52:11–34.

    CAS  PubMed  Google Scholar 

  105. Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol. 1997;29:859–70.

    Article  CAS  PubMed  Google Scholar 

  106. Kawano H, Do YS, Kawano Y, et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation. 2000;101:1130–7.

    Article  CAS  PubMed  Google Scholar 

  107. Yap SC, Lee HT. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology. 2012;116:1139–48.

    Article  PubMed  Google Scholar 

  108. Kingma Jr JG, Vincent C, Rouleau JR, Kingma I. Influence of acute renal failure on coronary vasoregulation in dogs. J Am Soc Nephrol. 2006;17:1316–24.

    Article  CAS  PubMed  Google Scholar 

  109. Desai KV, Laine GA, Stewart RH, et al. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am J Physiol Heart Circ Physiol. 2008;294:H2428–34.

    Article  CAS  PubMed  Google Scholar 

  110. Nath KA, Grande JP, Croatt AJ, et al. Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am J Pathol. 2005;166:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Go AS, Chertow GM, Dongjie Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  112. Beattie JN, Soman SS, Sandberg KR, Yee J, Borzak S, Garg M. Determinants of mortality after myocardial infarction in patients with advanced renal dysfunction. Am J Kidney Dis. 2001;37:1191–200.

    Article  CAS  PubMed  Google Scholar 

  113. Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau JL. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004;351:1285–95.

    Article  CAS  PubMed  Google Scholar 

  114. Rostand SG, Kirk KA, Rutsky EA. Dialysis-associated ischemic heart disease: insights from coronary angiography. Kidney Int. 1984;25:653–9.

    Article  CAS  PubMed  Google Scholar 

  115. Parfey PS, Harnett JD, Foley RN. Heart failure and ischemic heart disease in chronic uremia. Curr Opin Nephrol Hypertens. 1995;4:105–10.

    Article  Google Scholar 

  116. Bogrov AY, Shapiro JI. Endogenous digitalis: pathophysiologic roles and therapeutic applications. Nat Clin Pract Nephrol. 2008;4:378–92.

    Article  CAS  Google Scholar 

  117. Lundy DJ, Trzeciak S. Microcirculatory dysfunction in sepsis. Crit Care Clin. 2009;25:721–31.

    Article  CAS  PubMed  Google Scholar 

  118. Trzeciak S, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49:88–98.

    Article  PubMed  Google Scholar 

  119. Sakr Y, et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.

    Article  PubMed  Google Scholar 

  120. Lambermont B, et al. Effects of endotoxic shock on right ventricular systolic function and mechanical efficiency. Cardiovasc Res. 2003;59:412–8.

    Article  CAS  PubMed  Google Scholar 

  121. Jardin F, et al. Sepsis-related cardiogenic shock. Crit Care Med. 1990;18:1055–60.

    Article  CAS  PubMed  Google Scholar 

  122. Parker MM, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 1984;100:483–90.

    Article  CAS  PubMed  Google Scholar 

  123. Dhainaut JF, Huyghebaert MF, Monsallieret JF, et al. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation. 1987;75:533–41.

    Article  CAS  PubMed  Google Scholar 

  124. Niederbichler AD, Hoesel LM, Westfallet MV, et al. An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J Exp Med. 2006;203:53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kumar A, Thota V, Dee L, et al. Tumor necrosis factor-α and interleukin-1β are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med. 1996;183:949–58.

    Article  CAS  PubMed  Google Scholar 

  126. Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 1996;27:1201–6.

    Article  CAS  PubMed  Google Scholar 

  127. Lerolle N, Guérot E, Faisyet C, et al. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006;32:1553–9.

    Article  PubMed  Google Scholar 

  128. Murugan R, Karajala-Subramanyam V, Lee M, et al. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010;77:527–35.

    Article  CAS  PubMed  Google Scholar 

  129. Papaioannou VE, Dragoumanis C, Theodorouet V, et al. Relation of heart rate variability to serum levels of C-reactive protein, interleukin-6 and -10 in patients with sepsis and septic shock. J Crit Care. 2009;24:625.e1–e7.

    Article  CAS  Google Scholar 

  130. Schmidt H, Hoyer DH, Hennen R, et al. Autonomic dysfunction predicts both 1- and 2-month mortality in middle-aged patients with multiple organ dysfunction syndrome. Crit Care Med. 2008;36:967–70.

    Article  PubMed  Google Scholar 

  131. Ramchandra R, Wan L, Hood SG, et al. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1247–53.

    Article  CAS  PubMed  Google Scholar 

  132. Meijvis SC, et al. Prognostic value of serum angiotensin-converting enzyme activity for outcome of community-acquired pneumonia. Clin Chem Lab Med. 2011;49:1525–32.

    Article  CAS  PubMed  Google Scholar 

  133. Nakada TA, Russell JA, Boyd JH, et al. Association of angiotensin II type 1 receptor-associated protein gene polymorphism with increased mortality in septic shock. Crit Care Med. 2011;39:1641–8.

    Article  CAS  PubMed  Google Scholar 

  134. Doerschug KC, Delsing AS, Schmidt GA, Ashare A. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Crit Care. 2010;14:R24.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Shen L, Mo H, Cai L, et al. Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor-κB and mitogen-activated protein kinases. Shock. 2009;31:500–6.

    Article  CAS  PubMed  Google Scholar 

  136. Hagiwara S, Iwasaka H, Matumoto S, et al. Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit Care Med. 2009;37:626–33.

    Article  CAS  PubMed  Google Scholar 

  137. Nitescu N, Grimberg E, Guron G. Low-dose candesartan improves renal blood flow and kidney oxygen tension in rats with endotoxin-induced acute kidney dysfunction. Shock. 2008;30:166–72.

    CAS  PubMed  Google Scholar 

  138. Mortensen EM, Restrepo MI, Copeland LA, et al. Impact of previous statin and angiotensin II receptor blocker use on mortality in patients hospitalized with sepsis. Pharmacotherapy. 2007;27:1619–26.

    Article  CAS  PubMed  Google Scholar 

  139. Soni A, Pepper GM, Wyrwinski PM, et al. Adrenal insufficiency occurring during septic shock: incidence, outcome, and relationship to peripheral cytokine levels. Am J Med. 1995;98:266–71.

    Article  CAS  PubMed  Google Scholar 

  140. Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA. 2009;301:2362–75.

    Article  CAS  PubMed  Google Scholar 

  141. Sligl WI, Milner Jr DA, Sundar S, et al. Safety and efficacy of corticosteroids for the treatment of septic shock: a systematic review and meta-analysis. Clin Infect Dis. 2009;49:93–101.

    Article  CAS  PubMed  Google Scholar 

  142. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14:1549–58.

    Article  CAS  PubMed  Google Scholar 

  143. Grams ME, Rabb H. The distant organ effects of acute kidney injury. Kidney Int. 2012;81:942–8.

    Article  PubMed  Google Scholar 

  144. Burchill L, Velkoska E, Dean RG, Lew RA, Smith AI, Levidiotis V, Burrell LM. Acute kidney injury in the rat causes cardiac remodelling and increases angiotensin-converting enzyme 2 expression. Exp Physiol. 2008;93:622–30.

    Article  CAS  PubMed  Google Scholar 

  145. Liu M, Liang Y, Chigurupati S, et al. Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol. 2008;19:1360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tokuyama H, Kelly DJ, Zhang Y, Gow RM, Gilbert RE. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and heart following prolonged unilateral renal ischemia. Nephron Physiol. 2007;106:54–62.

    Article  Google Scholar 

  147. Liu KD, Taylor TB, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39:2665–71.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Macedo E, Bouchard J, Soroko SH, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14:R82.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bellomo R, Prowle JR, Echeverri JE, et al. Fluid management in septic acute kidney injury and cardiorenal syndromes. Contrib Nephrol. 2010;165:206–18. Basel Karger.

    Article  PubMed  Google Scholar 

  150. Boyd JH, Forbes J, Nakada T, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    Article  PubMed  Google Scholar 

  151. Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten SE, et al. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 2011;37:60–7.

    Article  CAS  PubMed  Google Scholar 

  152. Guzman JA, Rosado AE, Kruse JA. Vasopressin vs. norepinephrine in endotoxic shock: systemic, renal, and splanchnic hemodynamic and oxygen transport effects. J Appl Physiol. 2003;95:803–9.

    Article  CAS  PubMed  Google Scholar 

  153. Gordon AC, Russell JA, Walley KR, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36:83–91.

    Article  CAS  PubMed  Google Scholar 

  154. Deruddre S, Cheisson G, Mazoit GC, Vicaut E, Benhamou D, Duranteau J, et al. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–62.

    Article  PubMed  Google Scholar 

  155. Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36(suppl):S179–86.

    Article  CAS  PubMed  Google Scholar 

  156. Schmoelz M, Schelling G, Dunker M, Irlbeck M, et al. Comparison of systemic and renal effects of dopexamine and dopamine in norepinephrine-treated septic shock. J Cardiothorac Vasc Anesth. 2006;20:173–8.

    Article  CAS  PubMed  Google Scholar 

  157. Cobas M, Paparcuri G, De La Pena M, Cudemus G, Barquist E, Varon A, et al. Fenoldopam in critically ill patients with early renal dysfunction. A crossover study. Cardiovasc Ther. 2011;29:280–4.

    Article  CAS  PubMed  Google Scholar 

  158. Nigwekar SU, Waikar SS. Diuretics in acute kidney injury. Semin Nephrol. 2011;31:523–34.

    Article  CAS  PubMed  Google Scholar 

  159. Singh JP, Kandala J, Camm AJ. Non-pharmacological modulation of the autonomic tone to treat heart failure. Eur Heart J. 2014;35:77–85.

    Article  PubMed  Google Scholar 

  160. Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.

    Article  CAS  Google Scholar 

  161. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.

    Article  CAS  PubMed  Google Scholar 

  162. Mahfoud F, Ukena C, Schmieder RE, et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128:132–40.

    Article  CAS  PubMed  Google Scholar 

  163. Davies JE, Manisty CH, Petraco R, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;1(62):189–92.

    Article  Google Scholar 

  164. Ozaki Y. European Society of Cardiology (ESC) Congress Report from Munich 2012. Circ J. 2012;76:2530–5.

    Article  PubMed  Google Scholar 

  165. Renal Artery Denervation in Chronic Heart Failure Study (REACH). Available at: https://clinicaltrials.gov/ct2/results?term=NCT01538992. Accessed 30 June 2015.

  166. Renal denervation in patients with advanced heart failure (SIMPLICITY HF). Available at: https://clinicaltrials.gov/ct2/results?term=NCT01392196. Accessed 30 June 2015.

  167. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, Hoppe UC. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

    Article  PubMed  Google Scholar 

  168. Zile MR, Little WC. Effects of autonomic modulation: more than just blood pressure. J Am Coll Cardiol. 2012;59:910–2.

    Article  PubMed  Google Scholar 

  169. Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6.

    Article  CAS  PubMed  Google Scholar 

  170. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, Bohm M. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.

    Article  CAS  PubMed  Google Scholar 

  171. Pokushalov E, Romanov A, Corbucci G, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  172. Ukena C, Bauer A, Mahfoud F, et al. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol. 2012;101:63–7.

    Article  PubMed  Google Scholar 

  173. Ukena C, Mahfoud F, Spies A, et al. Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol. 2012;167:2846–51.

    Article  PubMed  Google Scholar 

  174. Van Stee EW. Autonomic innervation of the heart. Environ Health Perspect. 1978;26:151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol. 2004;287:R262–71.

    Article  CAS  PubMed  Google Scholar 

  176. Vanoli E, De Ferrari GM, Stramba-Badiale M, et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.

    Article  CAS  PubMed  Google Scholar 

  177. Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation. 1982;66:874–80.

    Article  CAS  PubMed  Google Scholar 

  178. La Rovere MT, Bigger Jr JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478–84.

    Article  CAS  PubMed  Google Scholar 

  179. Heck C, Helmers SL, DeGiorgio CM. Vagus nerve stimulation therapy, epilepsy, and device parameters: scientific basis and recommendations for use. Neurology. 2002;59(6 Suppl 4):S31–7.

    Article  CAS  PubMed  Google Scholar 

  180. Rush AJ, Marangell LB, Sackeim HA, et al. Vagus nerve stimulation for treatment- resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry. 2005;58:347–54.

    Article  PubMed  Google Scholar 

  181. Schwartz PJ, De Ferrari GM, Sanzo A, et al. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail. 2008;10:884–91.

    Article  PubMed  Google Scholar 

  182. Milby AH, Halpern CH, Baltuch GH. Vagus nerve stimulation for epilepsy and depression. Neurotherapeutics. 2008;5:75–85.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109:120–4.

    Article  PubMed  Google Scholar 

  184. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation. 2008;118:863–71.

    Article  PubMed  Google Scholar 

  185. Ando M, Katare RG, Kakinuma Y, et al. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 2005;112:164–70.

    Article  CAS  PubMed  Google Scholar 

  186. Zhang Y, Popovic ZB, Bibevski S, et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2:692–9.

    Article  CAS  PubMed  Google Scholar 

  187. Anholt TA, Ayal S, Goldberg JA. Recruitment and blocking properties of the CardioFit stimulation lead. J Neural Eng. 2011;8:034004.

    Article  PubMed  Google Scholar 

  188. De Ferrari GM, Crijns HJ, Borggrefe M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32:847–55.

    Article  PubMed  CAS  Google Scholar 

  189. Hauptman PJ, Schwartz PJ, Gold MR, et al. Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. Am Heart J. 2012;163:954–62.

    Article  PubMed  Google Scholar 

  190. Neural cardiac therapy for heart failure study (NECTAR-HF). https://clinicaltrials.gov/ct2/show/NCT01385176. Accessed 30 June 2015.

  191. Sabbah HN, Ilsar I, Zaretsky A, Rastogi S, Wang M, Gupta RC. Vagus nerve stimulation in experimental heart failure. Heart Fail Rev. 2011;16:171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bianchi S, Rossi P, Della Scala A, et al. Atrioventricular (AV) node vagal stimulation by transvenous permanent lead implantation to modulate AV node function: safety and feasibility in humans. Heart Rhythm. 2009;6:1282–6.

    Article  PubMed  Google Scholar 

  193. McCubbin JW, Green JH, Page IH. Baroreceptor function in chronic renal hypertension. Circ Res. 1956;4:205–10.

    Article  CAS  PubMed  Google Scholar 

  194. Chapleau MW, Hajduczok G, Abboud FM. Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci. 1988;295:327–34.

    Article  CAS  PubMed  Google Scholar 

  195. Thrasher TN. Unloading arterial baroreceptors causes neurogenic hypertension. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1044–53.

    Article  CAS  PubMed  Google Scholar 

  196. Biaggioni I, Whetsell WO, Jobe J, Nadeau JH. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii. Hypertension. 1994;23:491–5.

    Article  CAS  PubMed  Google Scholar 

  197. Robertson D, Hollister AS, Biaggioni I, et al. The diagnosis and treatment of baroreflex failure. N Engl J Med. 1993;329:1449–55.

    Article  CAS  PubMed  Google Scholar 

  198. Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.

    Article  CAS  PubMed  Google Scholar 

  199. Creager MA. Baroreceptor reflex function in congestive heart failure. Am J Cardiol. 1992;69:10G–5; discussion 15G–16G.

    Article  CAS  PubMed  Google Scholar 

  200. Zucker IH, Hackley JF, Cornish KG, et al. Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension. 2007;50:904–10.

    Article  CAS  PubMed  Google Scholar 

  201. Higashi T, Kobayashi N, Hara K, Shirataki H, Matsuoka H. Effects of angiotensin II type 1 receptor antagonist on nitric oxide synthase expression and myocardial remodeling in Goldblatt hypertensive rats. J Cardiovasc Pharmacol. 2000;35:564–71.

    Article  CAS  PubMed  Google Scholar 

  202. Nishida Y, Ding J, Zhou MS, Chen QH, Murakami H, Wu XZ, Kosaka H. Role of nitric oxide in vascular hyper-responsiveness to norepinephrine in hypertensive Dahl rats. J Hypertens. 1998;16:1611–8.

    Article  CAS  PubMed  Google Scholar 

  203. CVRx I. Health outcomes prospective evaluation for heart failure with EF ≥40%. In: CVRx I. Rheos HOPE4HF Study. https://clinicaltrials.gov/ct2/show/NCT00957073. Accessed 30 June 2015.

  204. Abraham WT, Zile MR, Weaver FA, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 2015;3:487–96.

    Article  PubMed  Google Scholar 

  205. Management MCRD. Acute carotid sinus endovascular stimulation II study. Available at http://www.clinicaltrials.gov/ct2/show/NCT01458483. Accessed 30 June 2015.

  206. Olgin JE, Takahashi T, Wilson E, Vereckei A, Steinberg H, Zipes DP. Effects of thoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and atrioventricular nodes. J Cardiovasc Electrophysiol. 2002;13:475–81.

    Article  PubMed  Google Scholar 

  207. Lopshire JC, Zhou X, Dusa C, et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a ca nine postinfarction heart failure model. Circulation. 2009;120:286–94.

    Article  PubMed  Google Scholar 

  208. Isa ZF, Zhou X, Unholy MR, Rosenberger J, Bhatia D, Groh WJ, Miller JM, Zipes DP. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation. 2005;111:3217–20.

    Article  Google Scholar 

  209. Medical SJ. Spinal cord stimulation for heart failure as a restorative treatment. Available at http://www.clinicaltrials.gov/ct2/show/NCT01362725. Accessed 30 June 2015.

  210. Management MCRD. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic heart failure. Available at http://www.clinicaltrials.gov/ct2/show/NCT01112579. Accessed 30 June 2015.

  211. Medical SJ. Trial of autonomic neuroModulation for trEatment of chronic heart failure. Available at http://www.clinicaltrials.gov/ct2/show/NCT01820130. Accessed 30 June 2015.

  212. Kobayashi M, Sakurai S, Takaseya T, et al. Effects of percutaneous stimulation of both sympathetic and parasympathetic cardiac autonomic nerves on cardiac function in dogs. Innovations (Phila). 2012;7:282–9.

    Article  Google Scholar 

  213. Metra M, Cotter G, Gheorghiade M, Dei Cas L, Voors AA. The role of the kidney in heart failure. Eur Heart J. 2012;33:2135–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Costanzo MD, FACC, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Costanzo, M.R., Gronda, E. (2016). The Autonomic Cardiorenal Crosstalk: Pathophysiology and Implications for Heart Failure Management. In: Gronda, E., Vanoli, E., Costea, A. (eds) Heart Failure Management: The Neural Pathways. Springer, Cham. https://doi.org/10.1007/978-3-319-24993-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24993-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24991-9

  • Online ISBN: 978-3-319-24993-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics