Skip to main content

Colloidal Photonic Crystals for Sensor Applications

  • Chapter
  • First Online:
Photonic Materials for Sensing, Biosensing and Display Devices

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 229))

Abstract

Colloidal crystals can be formed by self-assembly in which structural reflective color can be highly sensitive to interparticle distance or reflective index mismatch between particle and matrix. Therefore, if either matrix or particles are made out of stimuli-responsive materials, various environmental parameters can be sensed such as pH, temperature, pressure, mechanical deformation and so on. Also, by introducing chemical probes, various biomolecules (DNA) or toxic chemicals including gas and volatiles can be detected, which would be further extended to biomedical sensor platform. Compared with other sensor device, colloidal crystals are mechanically and chemical stable and their color change is reversible and could be operated without external (electrical or photon) energy. In this chapter, basic design principle of colloidal photonic crystals and sensors are described and representative examples of sensors are provided for various stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P.N. Pusey, W. van Megen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986)

    CAS  Google Scholar 

  2. W.G. Hoover, F.H. Ree, Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49, 3609–3617 (1968)

    CAS  Google Scholar 

  3. S.-C. Mau, D.A. Huse, Stacking entropy of hard-sphere crystals. Phys. Rev. E 59, 4396–4401 (1999)

    CAS  Google Scholar 

  4. P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999)

    CAS  Google Scholar 

  5. S. Wong, V. Kitaev, G.A. Ozin, Colloidal crystal films: advances in universality and perfection. J. Am. Chem. Soc. 125, 15589–15598 (2003)

    CAS  Google Scholar 

  6. Z. Zhou, X.S. Zhao, Flow-controlled vertical deposition method for the fabrication of photonic crystals. Langmuir 20, 1524–1526 (2004)

    CAS  Google Scholar 

  7. S.O. Lumsdon, E.W. Kaler, O.D. Velev, Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir 20, 2108–2116 (2004)

    CAS  Google Scholar 

  8. M. Trau, S.A. Saville, I.A. Aksay, Field-induced layering of colloidal crystals. Nature 272, 706–709 (1996)

    Google Scholar 

  9. Y. Monovoukas, A.P. Gast, The experimental phase diagram of charged colloidal suspensions. J. Colloid Interface Sci. 128, 533–548 (1989)

    CAS  Google Scholar 

  10. A. Yethiraj, A. van Blaaderen, A colloidal model system with an interaction tubable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003)

    CAS  Google Scholar 

  11. M. Michelle, W. Muscatello, L.E. Stunja, P. Thareja, L. Wang, J.J. Bohn, S.S. Velankar, S.A. Asher, Dependence of photonic crystal nanocomposite elasticity on crystalline colloidal array particle size. Macromolecules 42, 4403–4406 (2009)

    Google Scholar 

  12. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, 2008)

    Google Scholar 

  13. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands

  14. M.N. Shkunov, Z. Valy Vardeny, M.C. DeLong, R.C. Polson, A.A. Zakhidov, R.H. Baughman, Tunable, gap-state lasing in switchable directions for opal photonic crystals. Adv. Funct. Mater. 12, 21–26 (2002)

    Google Scholar 

  15. K. Busch, S. John, Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896–3908 (1998)

    CAS  Google Scholar 

  16. H. Senff, W. Richtering, Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J. Chem. Phys. 111, 1705–1711 (1999)

    CAS  Google Scholar 

  17. N. Dingenouts, Ch. Norhausen, M. Ballauff, Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering. Macromolecules 31, 8912–8917 (1998)

    CAS  Google Scholar 

  18. X. Hong, Y. Peng, J. Bai, B. Ning, Y. Liu, Z. Zhou, Z. Gao, A novel opal closest-packing photonic crystal for naked-eye glucose detection. Small 10, 1308–1313 (2014)

    CAS  Google Scholar 

  19. A. Mihi, M. Ocaña, H. Míguez, Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv. Mater. 18, 2244–2249 (2006)

    CAS  Google Scholar 

  20. P. Jiang, M.J. McFarland, Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 126, 13778–13786 (2004)

    CAS  Google Scholar 

  21. S.-H. Kim, S.-J. Jeon, G.-R. Yi, C.-J. Heo, J.H. Choi, S.-M. Yang, Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes and structures. Adv. Mater. 20, 1649–1655 (2008)

    CAS  Google Scholar 

  22. J.H. Moon, S. Kim, G.-R. Yi, Y.-H. Lee, S.-M. Yang, Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir 20, 2033–2035 (2004)

    CAS  Google Scholar 

  23. S.-H. Kim, H. Hwang, S.-M. Yang, Fabrication of robust optical fibers by controlling film drainage of colloids in capillaries. Angew. Chem. Int. Ed. 51, 3601–3605 (2012)

    CAS  Google Scholar 

  24. J.H. Moon, G.-R. Yi, S.-M. Yang, Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas. J. Colloid Interface Sci. 287, 173–177 (2005)

    CAS  Google Scholar 

  25. J. Li, P.R. Herman, C.E. Valdivia, V. Kitaev, G.A. Ozin, Colloidal photonic crystal cladded optical fibers: towards a new type of photonic band gap fiber. Opt. Express 13, 6454–6459 (2005)

    CAS  Google Scholar 

  26. X. Sun, J. Zhang, L. Xin, X. Fang, H. Peng, Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angew. Chem. Int. Ed. 54, 3630–3634 (2015)

    CAS  Google Scholar 

  27. O.D. Velev, A.M. Lenhoff, E.W. Kaler, A class of microstructured particles through colloidal crystallization. Science 287, 2240–2243 (2001)

    Google Scholar 

  28. Y. Gi-Ra, M. Jun Hyuk, Y. Seung-Man, Ordered macroporous particles by colloidal templating. Chem. Mater. 13, 2613–2618 (2001)

    Google Scholar 

  29. G.-R. Yi, V.N. Manoharan, S. Klein, K.R. Brzezinska, D.J. Pine, F.F. Lange, S.-M. Yang, Monodisperse micrometer-scale spherical assemblies of polymer particles. Adv. Mater. 14, 1137–1140 (2002)

    CAS  Google Scholar 

  30. G.-R. Yi, S.-J. Jeon, T. Thorsen, V.N. Manoharan, D.J. Pine, S.R. Quake, S.-M. Yang, Generation of uniform photonic balls by template-assisted colloidal crystallization. Synth. Met. 139, 803–806 (2003)

    CAS  Google Scholar 

  31. J.H. Moon, Y. Gi-Ra, S.-M. Yang, D.J. Pine, S.B. Park, Electrospray-assisted fabrication of uniform photonic balls. Adv. Mater. 16, 605–609 (2004)

    CAS  Google Scholar 

  32. S.H. Kim, S.Y. Lee, G.-R. Yi, D.J. Pine, Y. Seung-Man, Microwave-assisted self-organization of colloidal particles in confining aqueous droplets. J. Am. Chem. Soc. 128, 10897–10904 (2006)

    CAS  Google Scholar 

  33. X. Zhao, Y. Cao, F. Ito, H.-H. Chen, K. Nagai, Y.-H. Zhao, Z.-Z. Gu, Colloidal crystal beads as supports for biomolecular screening. Angew. Chem. Int. Ed. 45, 6835–6838 (2006)

    CAS  Google Scholar 

  34. Y. Zhao, X. Zhao, C. Sun, J. Li, R. Zhu, Z. Gu, Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal. Chem. 80, 1598–1605 (2008)

    CAS  Google Scholar 

  35. S.-H. Kim, J. Seog-Jin, W.C. Jeong, H.S. Park, S.-M. Yang, Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors. Adv. Mater. 20, 4129–4134 (2008)

    CAS  Google Scholar 

  36. S.-H. Kim, S.-J. Jeon, S.-M. Yang, Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane. J. Am. Chem. Soc. 130, 6040–6046 (2008)

    CAS  Google Scholar 

  37. K. Shirk, C. Steiner, J.W. Kim, M. Marquez, C.J. Martinez, Assembly of colloidal silica crystals inside double emulsion drops. Langmuir 29, 11849–11857 (2013)

    CAS  Google Scholar 

  38. T.M. Choi, J.-G. Park, Y.-S. Kim, V.N. Manoharan, S.-H. Kim, Osmotic-pressure-mediated control of structural colors of photonic capsules. Chem. Mater. 27, 1014–1020 (2015)

    CAS  Google Scholar 

  39. S.J. Yeo, F. Tu, S.-H. Kim, G.-R. Yi, P.J. Yoo, D. Lee, Angle- and strain-independent coloured freestanding films incorporating non-spherical colloidal photonic crystals. Soft Matter 11, 1582–1588 (2015)

    CAS  Google Scholar 

  40. S.-K. Lee, G.-R. Yi, S.-M. Yang, High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips. Lab. Chip 6, 1171–1177 (2006)

    CAS  Google Scholar 

  41. Z.-Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angew. Chem. 114, 1201–1204 (2002)

    Google Scholar 

  42. S. Kim, A.N. Mitropoulos, J.D. Spitzberg, H. Tao, D.L. Kaplan, F.G. Omenetto, Silk inverse opals. Nat. Photonics 6, 818–823 (2012)

    CAS  Google Scholar 

  43. H. Li, L. Chang, J. Wang, L. Yang, Y. Song, A colorful oil-sensitive carbon inverse opal. J. Mater. Chem. 18, 5098–5103 (2008)

    CAS  Google Scholar 

  44. HSoo Lee, J.H. Kim, J.-S. Lee, J.Y. Sim, J.Y. Seo, Y.-K. Oh, S.-M. Yang, S.-H. Kim, Magnetoresponsive discoidal photonic crystals towards active color pigments. Adv. Mater. 26, 5801–5807 (2014)

    CAS  Google Scholar 

  45. S.A. Asher, J. Holtz, L. Liu, Z. Wu, Self-assembly motif for creating submicron periodic materials, polymerized crystalline colloidal arrays. J. Am. Chem. Soc. 116, 4997–4998 (1994)

    CAS  Google Scholar 

  46. H. Fudouzi, T. Sawada, Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22, 1365–1368 (2006)

    CAS  Google Scholar 

  47. A.C. Arsenault, T.J. Clark, G.V. Feymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R.Z. Wang, S. John, D. Wiersma, G.A. Ozin, From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 5, 179–184 (2006)

    Google Scholar 

  48. B. Viel, T. Ruhl, G.P. Hellmann, Reversible deformation of opal elastomers. Chem. Mater. 19, 5673–5679 (2007)

    CAS  Google Scholar 

  49. J.M. Weissman, H.B. Sunkara, A.S. Tse, Sanford A. Asher, Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959–960 (1996)

    CAS  Google Scholar 

  50. Y. Takeoka, M. Watanabe, Template synthesis and optical properties of chameleonic poly(N-isopropylacrylamide) gels using closest-packed self-assembled colloidal silica crystals. Adv. Mater. 15, 199–201 (2003)

    CAS  Google Scholar 

  51. C.E. Reese, A.V. Mikhonin, M. Kamenjicki, A. Tikhonov, S.A. Asher, Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc. 126, 1493–1496 (2004)

    CAS  Google Scholar 

  52. M. Chen, L. Zhou, Y. Guan, Y. Zhang, Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates. Angewandte Chemie Int. Edn. 52, 9961–9965 (2013)

    CAS  Google Scholar 

  53. T. Kanai, D. Lee, H.C. Shum, D.A. Weitz, Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small 6, 807–810 (2010)

    CAS  Google Scholar 

  54. T. Kanai, D. Lee, H.C. Shum, R.K. Shah, D.A. Weitz, Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths. Adv. Mater. 22, 4998–5002 (2010)

    CAS  Google Scholar 

  55. K. Lee, S.A. Asher, Photonic crystal chemical sensors pH and ionic strength. J. Am. Chem. Soc. 122, 9534–9537 (2000)

    CAS  Google Scholar 

  56. C. Fenzl, S. Wilhelm, T. Hirsch, O.S. Wolfbeis, Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl. Mater. Interfaces 5, 173–178 (2013)

    CAS  Google Scholar 

  57. Y.-J. Lee, P.V. Braun, Tunable inverse opal hydrogel pH sensors. Adv. Mater. 15, 563–566 (2003)

    CAS  Google Scholar 

  58. S.-H. Kim, J.-G. Park, T.M. Choi, V.N. Manoharan, D.A. Weitz, Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nat. Commun. 5, 3068 (2014)

    Google Scholar 

  59. J.H. Holtz, S.A. Asher, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997)

    CAS  Google Scholar 

  60. D. Nakayama, Y. Takeoka, M. Watanabe, K. Kataoka, Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem. Int. Ed. 42, 4197–4200 (2003)

    CAS  Google Scholar 

  61. C. Zhang, G.G. Cano, P.V. Braun, Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678–5683 (2014)

    CAS  Google Scholar 

  62. J.P. Walker, S.A. Asher, Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal. Anal. Chem. 77, 1596–1600 (2005)

    CAS  Google Scholar 

  63. C. Fenzl, C. Genslein, A. Zopfl, A.J. Baeumner, T. Hirsch, A photonic crystal based sensing scheme for acetylcholine and acetylcholinesterase inhibitors. J. Mater. Chem. B 3, 2089–2095 (2015)

    CAS  Google Scholar 

  64. K.I. MacConaghy, C.I. Geary, J.L. Kaar, M.P. Stoykovich, Photonic crystal kinase biosensor. J. Am. Chem. Soc. 136, 6896–6899 (2014)

    CAS  Google Scholar 

  65. Y. Zhao, X. Zhao, B. Tang, W. Xu, J. Li, J. Hu, Z. Gu, Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection. Adv. Funct. Mater. 20, 976–982 (2010)

    Google Scholar 

  66. Y. Zhao, X. Hu, J. Jing, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, Z. Gu, Encoded porous beads for label-free multiplex detection of tumor markers. Adv. Mater. 21, 569–572 (2009)

    Google Scholar 

  67. K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000)

    CAS  Google Scholar 

  68. B. Sellergren, Imprinted polymers with memory for small molecules, proteins, or crystals. Angewandte Chemie Int. Ed. 39, 1031–1037 (2000)

    CAS  Google Scholar 

  69. X. Hu, G. Li, J. Huang, Z. Di, Y. Qiu, Construction of self-reporting specific chemical sensors with high sensitivity. Adv. Mater. 19, 4327–4332 (2007)

    CAS  Google Scholar 

  70. Y.-J. Zhao, X.-W. Z, Hu J, J. Li, W.-Y. Xu, Z.-Z. Gu, Multiplex label-free detection of biomolecules with an imprinted suspension array. Angew. Chem. Int. Ed. 48, 7350–7352 (2009)

    CAS  Google Scholar 

  71. L.D. Bonifacio, D.P. Puzzo, S. Breslav, B.M. Willey, A. McGeer, G.A. Ozin, Towards the photonic nose: a novel platform for molecule and bacteria identification. Adv. Mater. 22, 1351–1354 (2010)

    CAS  Google Scholar 

  72. L.D. Bonifacio, G.A. Ozin, A.C. Arsenault, Photonic nose-sensor platform for water and food quality control. Small 7, 3153–3157 (2011)

    CAS  Google Scholar 

  73. H. Xu, P. Wu, C. Zhu, A. Elbaz, Z.-Z. Gu, Photonic crystal for gas sensing. J. Mater. Chem. C 1, 6087–6098 (2013)

    CAS  Google Scholar 

  74. Y. Nazirizadeh, T. Karrock, M. Gerken, Visual device for pressure measurement using photonic crystal slabs. Opt. Lett. 37, 3081–3083 (2012)

    Google Scholar 

  75. Z.-H. Chen, Y. Wang, Y. Yang, Q. Na, Y. Wang, Z. Yu, Enhanced normal-direction excitation and emission of dual-emitting quantum dots on a cascaded photonic crystal surface. Nanoscale 6, 14708–14715 (2014)

    CAS  Google Scholar 

  76. R.E. Galian, M. Laferrière, J.C. Scaiano, Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors. J. Mater. Chem. 16, 1697–1701 (2006)

    CAS  Google Scholar 

  77. J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26, 1092–1095 (2014)

    CAS  Google Scholar 

  78. K.V. Sreekanth, S. Zeng, K.-T. Yong, T. Yu, Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B 182, 424–428 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shin-Hyun Kim or Gi-Ra Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, SH., Yi, GR. (2016). Colloidal Photonic Crystals for Sensor Applications. In: Serpe, M.J., Kang, Y., Zhang, Q.M. (eds) Photonic Materials for Sensing, Biosensing and Display Devices. Springer Series in Materials Science, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-24990-2_3

Download citation

Publish with us

Policies and ethics