Skip to main content

Thermodynamics of Environmentally Important Natural and Synthetic Phases Containing Selenium

  • Conference paper
  • First Online:
Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems

Abstract

Understanding and deciphering the processes proceeding near the surface are the urgent tasks of contemporary mineralogy and geochemistry, which are especially important for resolving ecological challenges and developing principles of rational environmental management. The paper presents our systematized data published about the thermodynamics of selenites, which are formed in the weathering zone of the sulfide ores, and determines approaches to quantitative physicochemical modeling of their formation conditions. The activities of components in natural waters beyond the zones of natural (oxidation zones) and man-made contamination with selenium (a ΣSe = 10−9, a ΣFe = 10−5, a ΣCu = 10−7, a ΣZn = 5 × 10−7, a ΣCo = 10−8, a ΣNi = 6 × 10−8, and a ΣPb = 10−8) and in waters formed in the oxidation zone (a ΣSe = 10−5–10−4, a ΣFe = 10−2, a ΣCu = 10−2, a ΣZn = 10−2, a ΣCo = 10−3, a ΣNi = 10−2, a ΣPb = 10−4) have been estimated. Eh–pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 7.0) software package. The database comprises the thermodynamic parameters of 46 elements, 47 main particles, 48 redox pairs, 551 particles in solution, 624 solid phases, and 10 gases. The Eh–pH diagrams of the Me–Se–H2O systems (Me = Cu, Pb, Co, Ni, Fe, Zn) were plotted for the average contents of these elements in underground water and for their contents in oxidation zones of sulfide deposits. The formation of Co, Ni, Fe, Cu, Zn, and Pb selenites and selenates at the surface is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aristarain LF, Hurlbut CS (1969) Ahfeldite from Pacajake Bolivia: restudy. Amer Min 54:448–456

    Google Scholar 

  • Bertrand E (1882) Sur la molybdomenite (selenite de plomb), la cobaltomenite (selenite de cobalt) et l’acide selenieux de Cacheuta (La Plata). Bull Soc Min France 5:90–92

    Google Scholar 

  • Charykova MV, Krivovichev VG, Depmeier W (2010) Thermodynamics of Arsenates, Selenites, and Sulfates in the Oxidation zone of Sulfide Ores: I. thermodynamic constants at ambient conditions. Geol Ore Deposits 52:689–700

    Article  Google Scholar 

  • Charykova MV, Krivovichev VG, Yakovenko OS, Semenova VV, Semenov KN, Depmeier W (2012) Thermodynamics of Arsenates, Selenites, and Sulfates in the Oxidation zone of Sulfide Ores: VI. Solubility of synthetic analogs of Ahlfeldite and Cobaltomenite at 25 °C. Geol Ore Deposits 54:638–646

    Article  Google Scholar 

  • Charykova MV, Krivovichev VG, Lelet MI, Yakovenko OS, Suleimanov EV, Depmeier W, Semenova VV, Zorina ML (2014) A calorimetric and thermodynamic investigation of the synthetic analogues of cobaltomenite, CoSeO3∙2H2O, and ahlfeldite, NiSeO3∙2H2O. Amer Miner 99:742–748

    Article  Google Scholar 

  • Charykova MV, Krivovichev VG, Ivanova NM, Semenova VV (2015) Thermodynamics of Arsenates, Selenites, and Sulfates in the Oxidation zone of Sulfide Ores: XI. Solubility of synthetic analogs of chalcomenite and zinc selenites at 25 °C. Zapiski RMO (Proc Russ Mineral Soc) 144:70–80 (In Russian)

    Google Scholar 

  • Chen F, Burns PC, Ewing RC (1999) 79Se: geochemical and crystallo-chemical retardation mechanisms. J Nucl Mater 275:81–94

    Article  Google Scholar 

  • Chukhlantsev VG (1956) Solubility product of selenite of some metals. Zh Neorg Khimii 1:2300–2305 (In Russian)

    Google Scholar 

  • Chukhlantsev VG, Tomashevsky GP (1957) The solubility of Selenites of certain metals. Zh Anal Khim 12:296–301 (In Russian)

    Google Scholar 

  • Des Cloizeaux AL, Damour MA (1881) Note sur la chalcomenite, nouvelle espece minerale (selenite de cuivre). Bull Soc Geol France 4:51–55

    Google Scholar 

  • Dunn PJ, Peacor DR, Sturman BD (1978) Mandarinoite, a new Ferric-Iron Selenite from Bolivia. Can Miner 16:605–609

    Google Scholar 

  • Garrels R, Christ Ch (1965) Solutions, minerals, and equilibria. Harper and Row, New York

    Google Scholar 

  • Herzenberg R, Ahlfeld F (1935) Blockit, ein Neues Selenerz aus Bolivien. Zentralbl Miner Geol Palaent Abt A:277–279

    Google Scholar 

  • Krainov SR, Ryzhenko BN, Shvets VM (2004) Geokhimiya podzemnykh vod. Teoreticheskie, prikladnye i ekologicheskie aspekty (Geochemistry of Subsurface Waters: Theoretical, Applied, and Environmental Aspects). Nauka, Moscow (in Russian)

    Google Scholar 

  • Krivovichev VG, Charykova MV (2006) Thermodynamic of mineral equilibrium in the system with toxic components. 1. Selenium. St.-Petersburg State University Publishing, St.-Petersburg (in Russian)

    Google Scholar 

  • Krivovichev VG, Depmeier W (2005) Selenates and selenites: systems Se–S–H2O, Pb–Se–S–H2O, U–Se–H2O, and U–Se–I–H2O—Thermodynamical analysis and geological applications. Zapiski RMO (Proc Russ Mineral Soc) 134:1–15 (In Russian)

    Google Scholar 

  • Krivovichev VG, Charykova MV, Yakovenko OS, Depmeier W (2011) Thermodynamics of arsenates, selenites and sulphates in oxidising zone of sulphides ore deposits. IV. Eh–pH diagrams of the systems Me–Se–H2O (Me = Co, Ni, Fe, Cu, Zn, Pb) at 298 К. Geol Ore Deposits 53:514–527

    Article  Google Scholar 

  • Mandarino JA (1994) Natural and synthetic Selenites and Selenates and their Gladstone-Dale compatibility. Eur J Min 6:337–349

    Article  Google Scholar 

  • Olin A, Nolang B, Osadchii EG, Ohman L-O, Rosen E (2005) Chemical thermodynamics of Selenium. Elsevier, Amsterdam

    Google Scholar 

  • Pekov IV, Yapaskurt VO, Britvin SN, Chukanov NV, Sidorov EG (2014) Zincomenite, IMA 2014-014. CNMNC Newsletter. Miner Mag 78:798

    Google Scholar 

  • Plant JA, Bone J, Voulvoulis N, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2014) Arsenic and Selenium. In: Lollar BS (ed) Treatise on geochemistry. Environmental Geochemistry, vol 11. Elsevier Pergamon, Amsterdam

    Google Scholar 

  • Séby F, Potin-Cautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 °C. Chem Geol 171:173–194

    Article  Google Scholar 

  • Shvartsev SL (1998) Gidrogeokhimiya zony gipergeneza. (Hydro-geochemistry of Supergene Zone). Nedra, Moscow (in Russian)

    Google Scholar 

Download references

Acknowledgments

This study was supported by St. Petersburg State University (grant number 3.38.286.2015). The equipments of the St. Petersburg State University Resource Centers “X-ray diffraction methods” and “Geomodel” were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Charykova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Charykova, M.V., Krivovichev, V.G. (2016). Thermodynamics of Environmentally Important Natural and Synthetic Phases Containing Selenium. In: Frank-Kamenetskaya, O., Panova, E., Vlasov, D. (eds) Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-24987-2_12

Download citation

Publish with us

Policies and ethics