Skip to main content

Ultrafast Response of Plasmonic Nanostructures

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

Abstract

Ultrafast photoresponse of plasmonic nanostrucutres, specifically, nanoparticles has been discussed here. Femtosecond laser pulses are useful not only for the time-resolved investigations but also to look at the optical nonlinearities in materials which are primarily electronic at such time-scales. Like the linear photoresponse such as absorption and scattering cross-sections, ultrafast nonlinear optical response also gets emensely enhanced at wavelenths near the surface plasmon resonace of the nanosystem under study. In a time-resolved measurement, typically the electronic scattering processes are studied, however, the confined accoustic phonons due to the finite size effects of the nanostrucutres can also modify the ultrafast time-resolved response. Although, Raman spectroscopy and infrared absorption spectroscopy are the popular techniques for studying phononic properties of the nanostructures, terahertz time-domain spectroscopy using ultrashort terahertz pulses also has shown potential to become another important characterization technique for nanoparticles specially at very low frequencies where other techniques are difficult to reach. We have attempted to present a comprehensive account of the above topics by including essential background given in the beginning of the chapter and subsequently discussing some of the important experimental results from the recent literature along with our results on metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krasavin AV, Zheludev NI (2004) Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl Phys Lett 84(8):1416–1418

    Article  CAS  Google Scholar 

  2. Renger J, Quidant R, van Hulst N, Palomba S, Novotny L (2009) Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys Rev Lett 103:266802

    Article  PubMed  Google Scholar 

  3. Rotenberg N, Betz M, van Driel HM (2010) Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys Rev Lett 105:017402

    Article  PubMed  Google Scholar 

  4. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27

    Article  CAS  Google Scholar 

  5. MacDonald KF, Zheludev NI (2010) Active plasmonics: current status. Laser Photonics Rev 4(4):562–567

    Article  CAS  Google Scholar 

  6. Ru ECL, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803

    Article  Google Scholar 

  7. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  8. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35

    Article  CAS  Google Scholar 

  9. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103

    Article  CAS  Google Scholar 

  10. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  11. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001–283020

    Article  Google Scholar 

  12. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  13. Mishchenko MI, Travis LD, Lacis AA (2004) Scattering, absorption, and emission of light by small particles. Cambridge University Press, New York

    Google Scholar 

  14. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  15. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  16. Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37:1909–1930

    Article  CAS  PubMed  Google Scholar 

  17. Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45(9):1470–1479

    Article  CAS  PubMed  Google Scholar 

  18. Shibu ES, Pradeep T (2011) Quantum clusters in cavities: trapped Au15 in cyclodextrins. Chem Mater 23(4):989–999

    Article  CAS  Google Scholar 

  19. Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann D Phys 25:377

    Article  CAS  Google Scholar 

  20. Gans R (1912) Uber Die Form Ultra Mikroskopischer Goldteilchen. Ann Phys 342:881

    Article  Google Scholar 

  21. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  22. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  23. Novo C, Gomez D, Perez JJ, Zhang ZY, Petrova H, Reismann M, Mulvaney P, Hartland GV (2006) Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys Chem Chem Phys 8:3540–3546

    Article  CAS  PubMed  Google Scholar 

  24. Stoll T, Maioli P, Crut A, Fatti ND, Vallee F (2014) Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles. Eur Phy J B 87:260–278

    Article  Google Scholar 

  25. Voisin C, Fatti ND, Christofilos D, Vallee F (2001) Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B 105:2264–2280

    Article  CAS  Google Scholar 

  26. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111(6):3858–3887

    Article  CAS  PubMed  Google Scholar 

  27. Kiel M, Mohwald H, Bargheer M (2011) Broadband measurements of the transient optical complex dielectric function of a nanoparticle/polymer composite upon ultrafast excitation. Phys Rev B 84:165121–165126

    Article  Google Scholar 

  28. van Dijk MA, Lippitz M, Orrit M (2005) Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry. Phys Rev Lett 95:267406–267409

    Article  PubMed  Google Scholar 

  29. Muskens OL, Fatti ND, Vallee F (2006) Femtosecond response of a single metal nanoparticle. Nano Lett 6(3):552–556

    Article  CAS  PubMed  Google Scholar 

  30. Ruijgrok PV, Zijlstra P, Tchebotareva AL, Orrit M (2012) Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. Nano Lett 12(2):1063–1069

    Article  CAS  PubMed  Google Scholar 

  31. Baida H, Mongin D, Christofilos D, Bachelier G, Crut A, Maioli P, Fatti ND, Vallee F (2011) Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys Rev Lett 107:057402

    Article  CAS  PubMed  Google Scholar 

  32. Masia F, Langbein W, Borri P (2013) Polarization-resolved ultrafast dynamics of the complex polarizability in single gold nanoparticles. Phys Chem Chem Phys 15(12):4226–4232

    Article  CAS  PubMed  Google Scholar 

  33. Voisin C, Christofilos D, Loukakos P, Fatti ND, Vallee F, Lerme J, Gaudry M, Cottancin E, Pellarin M, Broyer M (2004) Ultrafast electron–electron scattering and energy exchanges in noble-metal nanoparticles. Phys Rev B 69(19):195416–195428

    Article  Google Scholar 

  34. Allen PB (1987) Theory of thermal relaxation of electrons in metals. Phys Rev Lett 59:1460–1463

    Article  CAS  PubMed  Google Scholar 

  35. Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, New York

    Google Scholar 

  36. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    Article  CAS  Google Scholar 

  37. Fatti ND, Vallee F, Flytzanis C, Hamanaka Y, Nakamura A (2000) Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles. Chem Phys 251:215–226

    Article  Google Scholar 

  38. Anija M, Kumar S, Kamaraju N, Tiwari N, Kulkarni SK, Sood AK (2011) Ultrafast dynamics of gold nanorods: tuning between photo-bleaching and photo-induced absorption. Int J Nanosci 10:687–691

    Article  CAS  Google Scholar 

  39. Kumar S, Anija M, Sood AK (2013) Tuning ultrafast photoresponse of gold nanorods. Plasmonics 8:1477–1483

    Article  CAS  Google Scholar 

  40. Chemla DS, Herritage JP, Liao PF, Isaacs ED (1983) Enhanced four-wave mixing from silver particles. Phys Rev B 27(8):4553–4558

    Article  CAS  Google Scholar 

  41. Ricard D, Roussignol P, Flytzanis C (1985) Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett 10(10):511–513

    Article  CAS  PubMed  Google Scholar 

  42. Bloemer MJ, Haus JW, Ashley PR (1990) Degenerate four-wave mixing in colloidal gold as a function of particle size. J Opt Soc Am B 7(5):790–795

    Article  CAS  Google Scholar 

  43. Philip R, Kumar GR, Sandhyarani N, Pradeep T (2000) Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters. Phys Rev B 62(19):13160–13166

    Article  CAS  Google Scholar 

  44. Bahae MS, Said AA, Wei T-H, Hagan DJ, Stryland EWV (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quant Electron 26(4):760–769

    Article  Google Scholar 

  45. Tokizaki T, Nakamura A, Kaneko S, Uchida K, Omi S, Tanji H, Asahara Y (1994) Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass. Appl Phys Lett 65(8):941–943

    Article  CAS  Google Scholar 

  46. Luo S, Chen Y, Fan G, Sun F, Qu S (2014) Saturable absorption and reverse saturable absorption on silver particles with different shapes. Appl Phys A 117:891–894

    Article  CAS  Google Scholar 

  47. Elim HK, Yang J, Lee J-Y, Mi J, Ji W (2006) Observation of saturable and reverse saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Appl Phys Lett 88:083107

    Article  Google Scholar 

  48. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102(52):10643–10646

    Article  CAS  Google Scholar 

  49. Schaaff TG, Whetten RL (2000) Giant gold–glutathione cluster compounds: intense optical activity in metal-based transitions. J Phys Chem B 104(12):2630–2641

    Article  CAS  Google Scholar 

  50. Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106(13):3410–3415

    Article  CAS  Google Scholar 

  51. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343–362

    Article  CAS  PubMed  Google Scholar 

  52. Yadav BD, Kumar V (2010) Gd@Au15: a magic magnetic gold cluster for cancer therapy and bioimaging. Appl Phys Lett 97(13):133701–133703

    Article  Google Scholar 

  53. Link S, El-Sayed MA, Schaaff TG, Wetten RL (2002) Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster. Chem Phys Lett 356(3–4):240–246

    Article  CAS  Google Scholar 

  54. Philip R, Chantharasupawong P, Qian H, Jin R, Thomas J (2012) Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett 12:4661–4667

    Article  CAS  PubMed  Google Scholar 

  55. Kumar S, Shibu ES, Pradeep T, Sood AK (2013) Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film. Opt Express 21:8483–8492

    Article  CAS  PubMed  Google Scholar 

  56. Kamaraju N, Kumar S, Sood AK, Guha S, Krishnamurthy S, Rao CNR (2007) Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements. Appl Phys Lett 91(25):251103–251105

    Article  Google Scholar 

  57. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130(18):5883–5885

    Article  CAS  PubMed  Google Scholar 

  58. Matino F, Persano L, Arima V, Pisignano D, Blyth RIR, Cingolani R, Rinaldi R (2005) Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys Rev B 72(8):085437–085445

    Article  Google Scholar 

  59. O’Brien K, Kimura NDL, Rho J, Suchowski H, Yin X, Zhang X (2014) Ultrafast acousto-plasmonic control and sensing in complex nanostructures. Nat Commun 5:4042–4047

    PubMed  Google Scholar 

  60. Perner M, Gresillon S, März J, von Plessen G, Feldmann J, Porstendorfer J, Berg K-J, Berg G (2000) Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles. Phys Rev Lett 85:792–795

    Article  CAS  PubMed  Google Scholar 

  61. Zijlstra P, Tchebotareva AL, Chon JWM, Gu M, Orrit M (2008) Acoustic oscillations and elastic moduli of single gold nanorods. Nano Lett 8:3493–3497

    Article  CAS  PubMed  Google Scholar 

  62. Nishiguchi N, Sakuma T (1981) Vibrational spectrum and specific heat of fine particles. Solid State Commun 38:1073–1077

    Article  Google Scholar 

  63. Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE (2003) Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J Am Chem Soc 125:14925–14933

    Article  CAS  PubMed  Google Scholar 

  64. Hartland GV, Hu M, Wilson O, Mulvaney P, Sader JE (2002) Coherent excitation of vibrational modes in gold nanorods. J Phys Chem B 106(4):743–747

    Article  CAS  Google Scholar 

  65. Kumar S, Kamaraju N, Karthikeyan B, Tondusson M, Freysz E, Sood AK (2010) Direct observation of low frequency confined acoustic phonons in silver nanoparticles: terahertz time domain spectroscopy. J Chem Phys 133:014502–014505

    Article  PubMed  Google Scholar 

  66. Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C (2013) Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat Photonics 7:128–132

    Article  CAS  Google Scholar 

  67. Wang W, Vasa P, Pomraenke R, Vogelgesang R, Sio AD, Sommer E, Maiuri M, Manzoni C et al (2014) Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures. ACS Nano 8:1056–1064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial assistance from Nanomission Project of Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, S., Sood, A.K. (2016). Ultrafast Response of Plasmonic Nanostructures. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_6

Download citation

Publish with us

Policies and ethics