Skip to main content

Beyond Unfeasibility: Strategic Oscillation for the Maximum Leaf Spanning Tree Problem

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9422))

Included in the following conference series:

Abstract

Given an undirected and connected graph, the maximum leaf spanning tree problem consists in finding a spanning tree with as many leaves as possible. This \(\mathcal {NP}\)-hard problem has practical applications in telecommunication networks, circuit layouts, and other graph-theoretic problems. An interesting application appears in the context of broadcasting in telecommunication networks, where it is interesting to reduce the number of broadcasting computers in the network. These components are relatively expensive and therefore its is desirable to deploy as few of them as possible in the network. This optimization problem is equivalent to maximize the number of non-broadcasting computers. We present a strategic oscillation approach for solving the maximum leaf spanning tree problem. The results obtained by the proposed algorithm are compared with the best previous algorithm found in the literature, showing the superiority of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://homepage.univie.ac.at/ivana.ljubic/research/rlp/.

References

  1. Butenko, S., Cheng, X., Du, D., Pardalos, P.M.: On the constructionof virtualbackbone for ad hoc wireless network. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds.) Cooperative Control: Models,Applications and Algorithms, Cooperative Systems, vol. 1, pp. 43–54. Springer, US (2003)

    Chapter  Google Scholar 

  2. Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Networks 55(3), 205–220 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Duarte, A., Laguna, M., Martí, R., Sánchez-Oro, J.: Optimization procedures for the bipartite unconstrained 0–1 quadratic programming problem. Comput. Operat. Res. 51, 123–129 (2014)

    Article  Google Scholar 

  4. Duarte, A., Martí, R., Resende, M., Silva, R.: Improved heuristics for the regenerator location problem. Int. Trans. Oper. Res. 21(4), 541–558 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duarte, A., Sánchez-Oro, J., Resende, M., Glover, F., Mart, R.: Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. Inf. Sci. 296, 46–60 (2015)

    Article  Google Scholar 

  6. Feo, T.A., Resende, M., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)

    Article  MATH  Google Scholar 

  7. Fernandes, L.M., Gouveia, L.: Minimal spanning trees with a constraint on the number of leaves. Eur. J. Oper. Res. 104(1), 250–261 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the maximum leaf spanning tree problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 161–172. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Fujie, T.: The maximum-leaf spanning tree problem: Formulations and facets. Networks 43(4), 212–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem. Comput. Oper. Res. 30(13), 1931–1944 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gallego, M., Laguna, M., Martí, R., Duarte, A.: Tabu search with strategic oscillation for the maximally diverse grouping problem. J. Oper. Res. Soc. 64(5), 724–734 (2013)

    Article  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  13. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)

    Article  Google Scholar 

  14. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)

    Book  MATH  Google Scholar 

  15. Glover, F., Laguna, M.: Tabu search. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 2093–2229. Springer, US (1999)

    Google Scholar 

  16. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hansen, P., Mladenović, N., Moreno, J.A.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Laguna, M., Marti, R.: Scatter Search: Methodology and Implementations in C. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  19. Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sánchez-Oro, J., Laguna, M., Duarte, A., Martí, R.: Scatter search for the profile minimization problem. Networks 65(1), 10–21 (2015)

    Article  MathSciNet  Google Scholar 

  21. Sánchez-Oro, J., Pantrigo, J.J.: Duarte: Combining intensification and diversification strategies in vns. an application to the vertex separation problem. Comput. Oper. Res. 52(Pt. B(0)), 209–219 (2014)

    Article  Google Scholar 

  22. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

    Google Scholar 

  23. Storer, J.: Constructing full spanning trees for cubic graphs. Inf. Process. Lett. 13(1), 8–11 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministerio de Economía y Competitividad of Spain (Project Number TIN2012-35632-C02) and the Comunidad de Madrid (Project Number S2013/ICE-2894).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Sánchez-Oro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sánchez-Oro, J., Duarte, A. (2015). Beyond Unfeasibility: Strategic Oscillation for the Maximum Leaf Spanning Tree Problem. In: Puerta, J., et al. Advances in Artificial Intelligence. CAEPIA 2015. Lecture Notes in Computer Science(), vol 9422. Springer, Cham. https://doi.org/10.1007/978-3-319-24598-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24598-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24597-3

  • Online ISBN: 978-3-319-24598-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics