Skip to main content

Grid-Based Angle-Constrained Path Planning

  • Conference paper
  • First Online:
KI 2015: Advances in Artificial Intelligence (KI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9324))

Abstract

Square grids are commonly used in robotics and game development as spatial models and well known in AI community heuristic search algorithms (such as A*, JPS, Theta* etc.) are widely used for path planning on grids. A lot of research is concentrated on finding the shortest (in geometrical sense) paths while in many applications finding smooth paths (rather than the shortest ones but containing sharp turns) is preferable. In this paper we study the problem of generating smooth paths and concentrate on angle constrained path planning. We put angle-constrained path planning problem formally and present a new algorithm tailored to solve it – LIAN. We examine LIAN both theoretically and empirically. We show that it is sound and complete (under some restrictions). We also show that LIAN outperforms the analogues when solving numerous path planning tasks within urban outdoor navigation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  2. Bhattacharya, P., Gavrilova, M.L.: Roadmap-based path planning-Using the Voronoi diagram for a clearance-based shortest path. IEEE Robotics & Automation Magazine 15(2), 58–66 (2008)

    Article  Google Scholar 

  3. Kallmann, M.: Navigation queries from triangular meshes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 230–241. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Yap, P.: Grid-Based Path-Finding. In: Cohen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2338, pp. 44–55. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Transactions on Computational Intelligence and AI in Games 4(2), 144–148 (2012)

    Article  Google Scholar 

  6. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  9. Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* with Provable Bounds on Sub-Optimality, Advances in Neural Information Processing Systems 16 (NIPS). MIT Press, Cambridge (2004)

    Google Scholar 

  10. Botea, A., Muller, M., Schaeffer, J.: Near optimal hierarchical path finding. Journal of Game Development 1(1), 7–28 (2004)

    Google Scholar 

  11. Likhachev, M., Stentz, A.: R* Search. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence. AAAI press, Menlo Park (2008)

    Google Scholar 

  12. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, No. 2, p. 1177. AAAI Press, Menlo Park (2007)

    Google Scholar 

  13. Harabor, D., Grastien, A.: Online graph pruning for pathfinding on grid maps. In: AAAI 2011 (2011)

    Google Scholar 

  14. Kuwata, Y., Karaman, S., Teo, J., Frazzoli, E., How, J.P., Fiore, G.: Real-time motion planning with applications to autonomous urban driving. IEEE Transactions on Control Systems Technology 17(5), 1105–1118 (2009)

    Article  Google Scholar 

  15. Munoz, P., Rodriguez-Moreno, M.: Improving efficiency in any-angle path-planning algorithms. In: 2012 6th IEEE International Conference Intelligent Systems (IS), pp. 213–218. IEEE (2012)

    Google Scholar 

  16. Kim, H., Kim, D., Shin, J.U., Kim, H., Myung, H.: Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Engineering 84, 37–44 (2014)

    Article  Google Scholar 

  17. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)

    Article  Google Scholar 

  18. Pitteway, M.L.V.: Algorithms of conic generation. In: Fundamental Algorithms for Computer Graphics, pp. 219–237. Springer, Heidelberg

    Google Scholar 

  19. http://wiki.openstreetmap.org/wiki/Database

  20. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36(1), 267–306 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Yakovlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yakovlev, K., Baskin, E., Hramoin, I. (2015). Grid-Based Angle-Constrained Path Planning. In: Hölldobler, S., , Peñaloza, R., Rudolph, S. (eds) KI 2015: Advances in Artificial Intelligence. KI 2015. Lecture Notes in Computer Science(), vol 9324. Springer, Cham. https://doi.org/10.1007/978-3-319-24489-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24489-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24488-4

  • Online ISBN: 978-3-319-24489-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics